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Abstract

The accurate prediction of aerodynamically generated noise has become an

important goal over the past decade. Aeroacoustics must now be an integral part

of the aircraft design process.

The direct calculation of aerodynamically generated noise with CFD-like al-

gorithms is plausible. However, large computer time and memory requirements

often make these predictions impractical. It is therefore necessary to separate the

aeroacoustics problem into two parts, one in which aerodynamic sound sources are

determined, and another in which the propagating sound is calculated. This idea is

applied in acoustic analogy methods. However, in the acoustic analogy, the deter-

mination of far-field sound requires the solution of a volume integral. This volume

integration again leads to impractical computer requirements.

An alternative to the volume integrations can be found in the Kirchhoff method.

In this method, Green's theorem for the linear wave equation is used to determine

sound propagation based on quantities on a surface surrounding the source region.

The change from volume to surface integrals represents a tremendous savings in the

computer resources required for an accurate prediction.

This work is concerned with the development of enhancements of the Kirch-

hoff method for use in a wide variety of aeroacoustics problems. This enhanced

method, the modified Kirchhoff method, is shown to be a Green's function solution

of Lighthill's equation. It is also shown rigorously to be identical to the methods

of Ffowcs Williams and Hawkings. This allows for development of versatile com-

puter codes which can easily alternate between the different Kirchhoff and Ffowcs

Williams-Hawkings formulations, using the most appropriate method for the prob-

ii



Abstract iii

lem at hand.

The modifiedKirchhoff method is developedprimarily for usein jet aeroacous-

tics predictions. Applications of the method are shown for two dimensional and

three dimensionaljet flows. Additionally, the enhancementsaregeneralizedsothat

they may be usedin any aeroacousticsproblem.
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Chapter 1

Introduction

Over the past several decades, air travel has become popular. Along with the

increase in the use of aircraft has come a marked awareness of the tremendous

amounts of aerodynamically generated noise associated with air travel. A relatively

new field of study, aeroacoustics, has developed as a result. Aeroacoustics is con-

cerned with the investigation of noise generated by moving fluids and surfaces. As

the field of aeroacoustics progressed, so did the development of computer hardware

and numerical methods to be used in the solution of complex problems in science

and engineering. This report is concerned with the development of new numerical

techniques, Kirchhoff methods, for use in the prediction of noise generated by air

and surfaces in motion. The techniques are developed for use in the prediction of

noise from high speed jets. However, the development is generalized so that the

methods can be easily applied to other aeroacoustics problems, e.g. helicopter rotor

noise, fan noise, propeller noise, etc.

1



1.1 Computational Aeroacoustics

1.1 Computational Aeroacoustics

The field of computational aeroacoustics (CAA) is concerned with numerical

prediction of the production and propagation of aerodynamically generated sound.

The governing equations of fluid mechanics (the Navier-Stokes equations) govern

these phenomena. Recent advances in computer hardware and computational fluid

dynamics (CFD) methodology have made the direct calculation of aerodynamic

noise plausible, but there are several technical difficulties involved in extending

CFD technology to CAA applications. 1 Aerodynamic noise generation is governed

by nonlinear processes, and the problems of interest are normally associated with

high Reynolds number turbulent flows. CAA requires the determination of time

dependent flow fluctuations. Thus, conventional approaches to the calculation of

turbulent flows based on Reynolds averaging are not applicable, since they cannot

resolve the temporal history or spectra of the fluctuations. Direct numerical simu-

lation (DNS) can be used to resolve relevant length and temporal scales without the

need of modeling. However, these calculations are currently limited to low Reynolds

number flows, because of the large amounts of computational resources required. 2

In many applications, it may be desirable to perform a large eddy simulation (LES)

instead. In these calculations the large turbulent structures are calculated directly,

as in DNS calculations, but the smaller scales are modeled. It is believed that larger

scales are the most efficient in generating noise. 3-6 Mankbadi, et. al. 7-s have used

this approach to calculate the unsteady sound source in an axisymmetric supersonic

jet.

With the sound source calculated, several approaches are available to describe

the propagation. An obvious strategy is to extend the computational domain in the



1.2 Lighthill's Acoustic Analogy

calculations used to predict the source. However, if the objective is to predict noise

in the acoustic far-field, this direct approach requires prohibitive storage and leads

to unrealistic computation time. 7 The acoustic fluctuations are also quite small,

usually several orders of magnitude less than mean flow fluctuations. The use of

CFD-like algorithms to calculate these disturbances will result in dispersion and

dissipation errors. Highly accurate Dispersion Relation Preserving (DRP) schemes

have been developed to deal with these difficulties, 9 but storage limitations prohibit

their use in the calculation of far-field sound. Thus, the most attractive approach is

to separate the calculation into two domains, one for the prediction of the nonlinear

sound source, and the other to describe the linear sound propagation.

There are different means of describing the sound propagation after prediction

of the source. The most prevalent of these is Lighthill's acoustic analogy, i° Other

alternatives, which have become more popular recently, are surface integral meth-

ods. These methods are based on a formulation of Green's theorem for the linear

wave equation. Development of new types of surface integral methods for use in jet

acoustics studies is the main focus of this work. The developments are related to

acoustic analogy methods, so a brief discussion of each is in order.

1.2 Lighthill's Acoustic Analogy

One of the earliest and most influential developments in aeroacoustic theory

was presented in 1952, l° and further developed in 1954 by Lighthill. 11 In this work,

Lighthill re-arranged the mass and momentum conservation equations of fluid me-

chanics to form an inhomogeneous wave equation. In this arrangement, the fluid

medium was assumed to be at rest. The fluid motion was taken to be part of the



1.3 Surface Integral Theory 4

acoustic source term. This produced a means of determining the noise produced

by the turbulent velocity fluctuations in a flow field. The noise produced by solid

surfaces and their effect of the turbulent velocity fluctuations were not included

in Lighthill's theory. The resultant indeterminant, inhomogeneous wave equation,

the acoustic analogy, was a very important development. It provided many useful

scaling relations at that time. With the later development of CFD methods, the

acoustic analogy was used as a basis for the numerical calculation of turbulence

generated noise. In this case, CFD methods are used to determine the turbulent

velocity fluctuations, and thus the acoustic source term.

Since it's initial development, Lighthill's theory of aerodynamically generated

sound has been modified and extended to more accurately account for the effects of

source convection, etc. Examples of this work are presented by Phillips, 12 Lilley, 13

Ribner, 14 and many others. An in-depth survey is not in the scope of this project,

but two excellent reviews of classical jet noise theory are presented by Ribner, 15

and Lilley. 16

1.3 Surface Integral Theory

The first attempt to extend Lighthill's acoustic analogy to account for the

effects of surfaces in the flow field was presented by Curle. 17 This extension was ex-

panded to include the effects of arbitrary surface and turbulence motion by Ffowcs

Williams and Hawkings. 18 Both of these studies utilized the boundary solution to

the homogeneous wave equation presented by Kirchhoff. 19 Ffowcs Williams and

Hawkings were the first to present a version of Kirchhoff's solution valid for mov-

ing boundaries. This solution had been previously attempted by Morgans, 2° and



1.4 Traditional Kirchhoff Method 5

Khromov.21Morgans' solutionwasshownto havean ambiguity, while that of Khro-

mov was incorrect.22-23

While the work of FfowcsWilliams and Hawkings did a great deal to advance

the theory behind noisegenerationby surfaces,their resultswerenot presentedin

a manner that madethem easilyapplicablein numerical applications. Farassatand

Succi,24and others,presentedthe FfowcsWilliams-Hawkings equation in terms of

source (i.e. the surface) coordinates and time, as opposed to the observer (listener)

coordinates and time. This expression allows for efficient numerical predictions of

sound generated by moving surfaces. Farassat's formulation of the Ffowcs Williams-

Hawkings equation is the predominant method currently being employed in the

prediction of rotor and propeller noise. A popular example of these applications is

the WOPWOP code developed by Brentner. 25

1.4 Traditional Kirchhoff Method

The moving surfaces described above which generate noise need not be real,

solid Surfaces. Hawkings 26 was the first to demonstrate the notion of using a mathe-

matically defined surface to determine mid-field and far-field sound. If this surface

is allowed to enclose all sound sources, and is placed in a region where the lin-

ear wave equation is valid, the sound at points outside this surface is completely

defined in terms of quantities on the surface. This is a result of Kirchhoff's bound-

ary solution to the linear wave equation. 19 In numerical studies, the surface acoustic

quantities are usually determined through the use of a suitable CFD algorithm. The

combination of a near-field CFD computation with Kirchhoff's boundary integral

solution to determine mid-field and far-field sound was proposed by Hawkings, 26
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and has come to be known as the Kirchhoff Method. In this work it is often referred

to as the Traditional Kirchhoff Method.

As mentioned above, Ffowcs Williams and Hawkings is derived a version of

Kirchhoff's boundary solution which is valid for moving boundaries. Farassat and

Myers 27 expressed this solution in terms of source quantities. Their solution is

valid for a surface moving or deforming in an arbitrary manner. Their result is

easily applicable in numerical methods, and is the basis for many modern Kirchhoff

methods.

The traditional Kirchhoff method is attractive as a tool for numerical acous-

tic prediction because it utilizes surface integrals, and not volume integrals, over

a source region to determine mid-field and far-field acoustics. Additionally, the

Kirchhoff method does not suffer the dissipation and dispersion errors found when

the mid-field and far-field sound is directly calculated with an algorithm similar

to those used in computational fluid dynamics studies. A review of the theory and

application of Kirchhoff methods is presented by Lyrintzis. 2s

There are difficulties with using the Kirchhoff and related methods for some

aeroacoustic problems. For an accurate prediction, the Kirchhoff control surface

must completely enclose the aerodynamic source region. This may be difficult or

impossible to accomplish if the source region is large. The validity of each method is

also dependent on the control surface being placed in a region where the linear wave

equation is valid. Difficulties meeting these criteria frequently arise in jet acoustics

and similar studies.

Despite these limitations, the traditional Kirchhoff method has been used re-

cently in jet noise predictions. Lyrintzis and Mankbadi 29 calculated the noise due
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to a supersonic round jet. They avoided the difficulties discussed above by using

an open Kirchhoff surface. That is, no near-field acoustic data was used in regions

where the linear wave equation was not valid. This left the predictions invalid in

some regions of the calculation domain. Mitchell, et. al. 3° performed similar calcu-

lations, with a slightly different formulation of Kirchhoff integral equation and an

open surface. Freund et. al. 31 investigated the effects of using an open surface, and

proposed corrections for the missing surface using asymptotic approximations and

stationary phase assumptions. The current work is devoted to correction of these ef-

fects in a different manner. The corrections come from extensions of the traditional

Kirchhoff and Ffowcs Williams-Hawkings equations to account for nonlinearities at

and outside of the surface.

1.5 Scope of this Work

The main goal of this work is to develop extensions to the traditional Kirchhoff

method for use in jet noise aeroacoustics calculations. However, the extensions

are quite generalized, so that the newly derived methods will be applicable to a

wide range of problems. A secondary goal is to show rigorously the relationship

between the traditional Kirchhoff method, the newly derived methods, and the

Ffowcs Williams-Hawkings based methods. Numerical calculations will be used to

verify the derivations. Results obtained from sample jet acoustics calculations will

be presented as well.

It is conceivable that versatile codes can be developed with the results of this

report. The codes will be able to alternate between the use of the traditional

Kirchhoff method, traditional Ffowcs Williams-Hawkings methods, or the modified
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methods developed here. Researchers will then have the choice of the optimum

acoustic prediction obtainable with input from any aerodynamic prediction code.

The report is divided into six chapters. Chapter two discusses the development

of the traditional Kirchhoff method. Chapter three describes the proposed exten-

sions to the Kirchhoff method. Test and validation calculation results, obtained with

simple acoustic sources, are presented in each of these chapters. Sample jet noise

calculation results are presented in chapter four. Chapter five presents corrections

for the refraction caused by mean flow gradients, and chapter six contains conclu-

sions, and a discussion of additional issues and proposed future work. Portions of

this work were presented by the authors in references 32-35.



Chapter 2

The Traditional Kirchhoff Method

A description of the development and uses of the traditional Kirchhoff method

will be presented in this chapter. While some of this material (the Kirchhoff for-

mula for a moving and deformable surface in three dimensions) has been presented

previously, the the remainder of the results are new. The methods and concepts

involved in the derivations are unique enough to warrant a review, as the mathe-

matical development here will serve as a basis for that to be used in the following

chapter.

2.1 Generalized Wave Equation

2.1.1 Time Domain

Consider a closed and bounded smooth surface S, the Kirchhoff Surface. Let

f = 0 describe the surface such that f > 0 in the exterior of the surface. Now

assume a function ¢, which is continuous and has continuous first derivatives over

9
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f > 0, satisfies the linear wave equation

1 02¢ 02¢
a_O: Ox_- 0¢ = 0 (2.1)

outside the surface. Further assume that ¢ and it's first derivatives are given on S

for all time. Now, let ¢ be extended to the interior of the surface by setting ¢ = 0

inside of S. The extended function (p(2, t) is defined as

{ ¢(_, t) f>O¢(_,t) = ¢(_,t)H(f) = 0 f < 0 (2.2)

Where H(f) is the Heaviside function. It follows that [:]2_ = 0 is valid everywhere

but at the surface. The function ¢ is discontinuous at the surface, and it's deriva-

tives do not exit there. Generalized derivatives, 36-3s however, can be defined. If

generalized derivatives are used in equation (2.1), then it is valid over all space. An

overbar denotes generalized derivation.

E]2¢ ¢ 0 (2.3)

The source terms that appear on the right side of (2.3) will lead to the traditional

Kirchhoff formulation. The generalized derivatives in (2.3) can be expanded as

- +
Ot Ot

Ot 2

-o_ o_
Oxi Oxi

¢-5[ _'=-_

o2_
at 2

+ ¢_xifiiS(f)

(2.4)

0¢
_5(s) + _x_Ox 2 = _2x/2 + [¢_i5(f)] (2.5)

where 5(f) is the Dirac delta function, and the surface normal vector ni = Of/Oxi.

Quantities ¢ and O¢/On are taken in the limit as f --+ 0 +. Using (2.1), (2.4) and

(2.5) in (2.3) gives

02¢-- O_ 6(f) - _x/[¢_i5(f)] (2.6)
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This generalized wave equation is valid over all space and time. The source terms

on the right side are due to the discontinuities in ¢ and its derivatives at S.

2.1.2 Frequency Domain

Through use of the Fourier transform, equation (2.1) can be expressed in the

frequency domain as the Helmholtz equation,

°2¢ o (2.7)
Ox_ + =

where w is the cyclic frequency, k is the wave number, k = W/ao, and ¢ is the

complex Fourier transform of ¢

= f Ceiwtdt
oo

lj¢ = -_ _be -i_tdw
ROG --OO

Then, following the analysis above, the generalized form of the Helmholtz equation

is

82 O_(f) -

The generalized wave equations can be solved through the use of appropri-

ate Green's functions to produce the Kirchhoff's integral equation. The necessary

Green's function is dependent on the formulation (time or frequency), and the

dimension of the problem. Green's functions for two dimensional and three dimen-

sional problems are presented here.

2.2 Green's Functions

If source coordinates and time are denoted by (Yi, 7) and observer coordinates

and time are denoted with (xi, t), r = ]xi - Yi], and ao is the ambient wave speed,
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the free-space Green's function for the three dimensional wave equation (i.e. indices

i and j are 1 - 3) is 27

r
5(g) where g=T--t+-- (2.9)

G3- 47rr ao

In the frequency domain, the Green's function may be expressed as

(iwr/ao)
G3 = exp (2.10)

47_r

However, if the problem of interest is two dimensional (i, j = 1 - 2) then the time

domain free-space Green's function is 39

H(aot-r)
G2 = (2.11)

2_ao (ah 2 - r 2)

and in the frequency domain,

G2- Hg2)(kr) (2.12)
4i

where /t0(2) is the Hankel function of the second kind of order zero. 4° Convolution

of these functions with the corresponding generalized wave equations will lead to

the different forms of the Kirchhoff integral equation.

2.3 Stationary Kirchhoff Integral

2.3.1 Time Domain - 3D

Convolution of the three dimensional, time domain, free-space Green's func-

tion, (2.9) with (2.6), and integration over all space and over (-oc, t] in time gives

0 _-_5(f)5(g) (2.13)a=¢(_'t)=-fl_ 5(f)5(g)dyd_ ox, f dyd_

The volume element dy is equal to dS dr, where dS is the element of area on S. z

may now be transformed to g. The Jacobian of this transformation, for a stationary
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surface is 1. Integration over space is restricted to S, due to the nature of the delta

functions, and integration over g introduces the retarded time.

47_¢(:_,t) = 1 0¢ dS Oxi r

Here the subscript T* indicates evaluation of the quantities in brackets at the re-

tarded (emission) time

- ¢(yi,t - r/ao)

The gradient operator can be brought inside the second integral. Then the tradi-

tional Kirchhoff integral for a stationary surface is

47r¢(Z,t)H(f) = is lr cos0- _nn _.

where cos0 = _'. _/1_'1.

Due to the nature of the Heaviside function, this formula will produce a null

sound field for any observer inside of S. As a result, ¢, O¢/On, and 0¢/07 are

not independent on S. Equation (2.15) can be used to determine the sound signal

at any observer point outside of S based on quantities on S. Alternatively, the

observer can be placed on the surface. In this case, (2.15) becomes an integral

equation governing ¢ on S. This is the basis for boundary element methods. 41 The

derivation here follows that of Farassat and Myers. 27

2.3.2 Frequency Domain - 3D

The frequency domain formulation of the Kirchhoff integral equation is devel-

oped in the same manner as that presented above. Convolution of (2.10) with (2.8),

and integration over all space gives

r__n S(f)lc9¢ ei'"la° Ox----_O___r_5(f )¢_tiei,_,.lao47r¢(Y,,w)H(f) = - Jf dff - f dff (2.16)
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As in the previous section, the divergence operator is brought inside the integral to

produce the Kirchhoff integral in the frequency domain,

4r¢(:_,w)H(f)= _e i_r/a° iWcos0¢-_nn + dS (2.17)
ao r 2 J

This frequency domain formulation of Kirchhoff's integral equation is often used

in applications. 42 Recently, the developments of Farassat and Myers 27 made time

domain applications more easily applicable. Farassat and Myers mention that the

developments of this section (producing the frequency domain Kirchhoff integral

from a generalized form of the Helmholtz equation) are valid, but do not actually

carry out the necessary steps, which are shown here.

2.3.3 Frequency Domain - 2D

The two dimensional formulations of Kirchhoff's integral equation can be devel-

oped in the same manner as those for three dimensional problems presented above.

However, the free-space Green's function for the wave equation in two dimensions,

equation (2.11), does not contain a Dirac delta function which would lead to the

notion of a retarded time. Alternatively, it can be said that Huygens' principle 42

is not valid in two dimensions. The lack of a retarded time makes the time domain

formulation unattractive for 2D cases. The frequency domain formulation, however,

is useful in applications and is shown here. Atassi and his associates have used a

two dimensional frequency domain formulation in studies of acoustic radiation from

airfoils. 43-45

The two dimensional frequency domain formulation is derived in the same

manner as that presented above. The generalized 2D Helmholtz equation (2.8) is

convolved with the free-space Green's function, (2.12). The integration is over all
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space in two dimensions.

0¢ y_2)(kr)5(f) d_7 -0
4i¢(2,w)H(f) : - f -_n - Ox---_/ ¢fii H_2)(kr)5(f)d_7 (2.18)

The divergence operator acts only on the Hankel function, so the two dimensional

form of the frequency domain Kirchhoff integral is

[O_S H:2)(kr) -cosOkCH_2)(kr)] dS_ (2.19)4i¢(£,w)H(f) = - fs

Here the integral over S is understood to be a line integral in two dimensional space.

2.4 Moving/Deforming Kirchhoff Integral

The analysis used above can also be used to determine the Kirchhoff integral

for an arbitrarily moving or deforming surface. In this case the function f, which

defines the surface, is a function of time. Thus, the temporal derivatives in (2.6)

become

= _ + _ 5(f)- eraS(f)

o: - ot2 ot_ v.5(f) - -_ [¢v.6(f)] (2.20)

where vn = -Of/Ot is the local normal velocity of the surface. The subscript x

on the temporal derivative is to indicate differentiation at the observer time and

coordinates. The generalized Laplacian of ¢ is given by equation (2.5) above. Using

(2.20) and (2.5) in (2.6) results in

LMD2[¢H(f)] =- _nn+ao nOtx) 5(f)
(2.21)

1 0 [Mn¢5(f)]- 0
ao Ot -_xi [¢_i 5(f)]
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Here Mn = Vn/ao is the local normal Mach number of the surface motion. This

equation is also valid over all space and time, so that the above procedure can be

followed. Use of the free-space Green's function for the temporal wave equation,

equation (2.9), gives

r ao OZy /

lO

ao Ot f I Mn ¢5(f) 5(g) d_ldrr (2.22)

-O
Oxi f l oni 3(Y) 5(g) dyd'rr

The subscript y on the temporal derivative now indicates evaluation of the derivative

at the source time and coordinates. It is now possible to evaluate the integrals, and

transform T to g to obtain a valid form of the Kirchhoff integral equation. However,

this would leave the temporal derivative and divergence operators outside of the

integrals. Such a formulation would be difficult to utilize in numerical applications.

However, Farassat and Myers 27 show how the operators may be expressed in terms

of source quantities. Their derivation is followed here.

First, note that the generalized divergence operator acts only on the term

5(9)#. This term may be re-written as 27

.iv] 1.[ 10-_i a-o r 2
(2.23)

where ? = (2 - _l)/r is the unit radiation vector. Using this relation in (2.22) leads

to

r ao o'ry /

+ f -_c°sOS(f) 5(9) d_ld'r

1 -0r ¢
(cosO- Mn) 5(f ) 5(g) d_TdT+ ] 7

(2.24)
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The temporal derivative in observer time of the third integral must also be expressed

in a different form to create a useful formulation. Thus, it is transformed to source

time, and brought inside the integral. First, ff is transformed to coordinates local

to the surface, (ul,u 2,u3). (U 1,u 2) describe the surface, and u 3 = f. Then 7

is transformed to g. The Jacobians of the transformations are 1 and 1/(1 - Mr)

respectively, where Mr = Mi?i is the Mach number of the surface motion in the

radiation direction. Integration over _ and g gives

r, cos0+
:

1.oo '/1
ao Ovy ] j r.

du 1 du 2

du 1 du 2

(2.25)

du 1 du 2/o{ o(cos0..)0 ]}+ (S) aor(1 - Mr) O7 (1- Mr) _..

The determinant of the coefficients of the first fundamental form on the surface S

is g(2) _--- gllg22 --g?2' where gij are the metric tensor components for (i,j = 1, 2).

Details on differential geometry can be found in a book by Aris. 46 g(2) is a function of

_7and the source time, T. The surface integral is over D(S), the domain of S in the

space defined by (ul,u2). Subscript r* again indicates evaluation of the integrand

at the emission time T*, which is now the root of

g = T -- t + Ii -- ;(ul' u2, 0, T)I = 0 (2.26)
ao

If the surface velocity is subsonic (2.26) has a unique solution. However, (2.25) is

still valid for supersonically moving surfaces. Farassat and Myers 47 have developed

an "emission surface" formulation that deals with the singularities caused when

(1 - Mr) -----+ 0. However, this formulation is lengthy and quite complicated,

so it is not used here. Doppler singularities are not encountered in the cases of

interest shown here. Farassat and Myers 27 evaluated the time derivative in the
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third integral of (2.25) analytically, to cast the integral in a form that is useful in

numerical applications. Their notation is used here, for the moving surface version

of the traditional Kirchhoff formula

[ EI_ CE2g_ ]
4zr¢(i,t)H(f)= /D(S) [r _---- M-r) + r2_ :-M--r)Jr. dul du2

(2.27)

where

E1 = (M 2 -1) _nn+/)¢ MnMt • V2¢ - Mn_bao

1 [/1;/r (cosO- Mn)¢]
+ ao(1- Mr) 2

1 [(izr--l_ln--hM)¢ (2.28)+ ao(1- Mr)

+ (cosO- Mn)¢+ (cose- Mn)¢_I

(1 - M 2) (cos 0 - Mn)
E2 --(1 - Mr) 2

Here -_/t is the Mach number vector tangent to the surface, and V2 is the surface

gradient operator. Also, (a dot indicates a source time derivative, with (u 1, u 2, u 3)

kept fixed)

The convective derivative ¢ is defined by

o¢ 0¢
= aoM_ + ao_- V_¢+

Or_

The form of (2.28) and El, E2 were given by Farassat and Myers. 27 E2 was presented

in the simplified form shown here by Myers and Hausmann. 4s If the control surface

is assumed to be rigid, then [gv/-g_]r*du ldu 2 is equal to the differential surface

element dS. This form of Kirchhoff's integral equation is the most popular, and
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is widely used in aeroacoustic calculations, 28 particularly rotor and propeller noise

studies.

It is also possible to develop frequency domain and two dimensional formula-

tions of the Kirchhoff integral for generally moving and deforming surfaces. The

process would be identical to that shown above. However, general surface deforma-

tion and motion is time dependent and not periodic. Mixing these time dependent

quantities with frequency dependent quantities in a "mixed formulation" seems to

be counter productive. It seems to be most efficient to keep all quantities in terms

of either frequency or time. Therefore, the full Kirchhoff formula for a generally

moving and deforming surface will only be presented for the time domain, three di-

mensional case. Development of other formulations in the manner described above

would be valid however. One special case of interest where a frequency domain for-

mulation can be developed is that of uniform rectilinear motion by a rigid surface.

This formulation is presented next.

2.5 Uniform Rectilinear Motion

2.5.1 Time Domain

A case of interest in aeroacoustics and aerodynamics is that of uniform recti-

linear motion, i.e. the Kirchhoff surface and observer points are both moving in the

same direction, with the same constant velocity. Myers and Hausmann 49 used a re-

duced form of the Farassat and Myers 27 formulation to calculate acoustic scattering

due to bodies moving in this fashion. Morino 41 developed an equivalent formula-

tion for use in unsteady aerodynamics. Here, the traditional Kirchhoff formulation

is shown for the case of rectilinear motion. This formula can be used in the study
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of forward flight effects on jet acoustics.

The control surface is assumed to be rigid and, due to the rectilinear nature

of the motion,/_/, b, ¢t, etc. are zero. It is convenient to express the integrals in a

frame of reference that is moving with the surface and observer. Let (Xl, x2, x3) and

(Yl, Y2, Y3) now denote the cartesian observer and source coordinates in the moving

frame, and let (X1,X2,X3) and (Y1,Y2,Y3) be the stationary observer and source

coordinates. Then

xi(t) = xi + ,v }_(ff, "7") = yi(_) + TV

where V is the speed of the surface motion. If the motion is assumed to be in the

Xl direction, Equation (2.26) can now be written explicitly as 49

1

ao(t--T*)= {[(Xl -- yl) -t- V (t - 7-*)] 2 + (x2 - y2) 2 -t- (x3 - y3)2} _ (2.29)

Solving for r* gives

where

ro

r* = t- ro + M (Xl - Yl) (2.30)
ao (1 - M 2)

1

{(xl- yl) 2 + (1- M 2) [(x2- y2) 2 + (x3- y3) 2] }_

Equation (2.27) can now be applied as for an arbitrary surface. The simplified form

is

where

= fs r(1- Mr)
¢E2 ] dS (2.31)

+ r2( :  tr)Jr.

E71 -_ (M 2 - 1) 005 Mn_b +-_n + Mnff/It " V2¢- ao ao(1- Mr)
(cosO- Mn) ¢ (2.32)

This expression is the Kirchhoff formula appropriate for use in studies of jet noise

in which there is a non-zero free stream velocity.
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2.5.2 Frequency Domain

The frequencydomaincounterpart to equation(2.32)canbederivedin asimilar

manner to that shown above. An equivalent frequency domain formulation for

rectilinear motion waspresentedby Lyrintzis and Mankbadi.29The equivalent to

(2.32) in the frequencydomain is

4_:¢(2,w)H(f) = Is K1ei_r/a° r (1 -- Mr)
] ds (2.33)

+ r2 (1 - Mr)]

where

iMnw
K1 -- (M 2 - 1) 0(_ Mnff/It V2_ '__n + • __ao ao(1- Mr) (cosO- Mn) (2.34)

Validation calculations using the various Kirchhoff integral formulations are pre-

sented next.

2.6 Validation Calculations

Several calculations have been performed in order to validate the surface inte-

gral methodology and the computer codes used in this research. Results of these

calculations are presented in this section.

2.6.1 Three Dimensional Calculations

The easiest means of testing the numerical implementation of Kirchhoff's inte-

gral equation is to place a point acoustic source inside of a simply defined surface.

The point acoustic source is defined by the right side of

[_¢= QS(ffo) (2.35)
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whereQ is the source function, and _(y_) is the Dirac delta function with support

at 9°. Equation (2.35) can be solved through the use of the free-space Green's

function. The solution in terms of observer variables is

¢(£,t)- [Q]r" (2.36)
4_r

where r = ]£ - _7o]. Equation (2.36) can be used to determine ¢, On, and ¢r on

a Kirchhoff surface which surrounds _7o. Because it is most appropriate for use

in jet acoustics predictions, a cylindrical Kirchhoff surface is used in most of the

calculations here. The Kirchhoff surface and point source geometry are shown in

figure 2.1.

R

S

_--- Point Source IT

..........J.;k

A

(x,t)

1_ Lk _1_-I

Figure 2.1. Point source and Kirchhoff surface geometry for the validation calcula-

tions.

The first calculations were performed to validate the traditional Kirchhoff

method in the time domain. A point monopole was used as the acoustic source
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at _7o.That is, Q = A sin(wor), where wo is the angular frequency of the acoustic

radiation, and A is a scalar amplitude. _7o was chosen so that the point monopole

was on the centerline of the cylindrical Kirchhoff surface, 3.5 A from the left end

of the surface; where the wavelength A is wo/2rCao. The Kirchhoff surface had a

length, Lk of 10 A, and a radius, Rk of 2 A. First order, mid-panel quadrature 5° was

used to solve the integrals in equation (2.31). 201, 81, and 73 quadrature points

were used on the surface in the axial, radial and azimuthal directions respectively.

There were 64 discrete temporal points per acoustic period, T = 27r/wo. Figure

2.2 shows exact and predicted temporal acoustic signals at an observer located at

(x, R) = (5 A, 5 A). Both the Kirchhoff surface and the observer are stationary. The

predicted signal, calculated with the traditional Kirchhoff method, and the exact

signal, from equation (2.36) show excellent agreement.

Figure 2.3 shows the exact and predicted signals for identical conditions to those

used to generate figure 2.2, except that both the Kirchhoff surface and the observer

are moving in the negative x direction with a Mach number of M = 0.40. The signals

again show excellent agreement. The traditional Kirchhoff method should thus be

valid for control surfaces and observers which are stationary, or in rectilinear motion,

as long as all acoustic sources are contained within the Kirchhoff surface, and there

is a suitable number of quadrature and temporal points used. The frequency domain

version of the three dimensional Kirchhoff integral was also used to calculate the

acoustic field of a point acoustic monopole. In this case, equation (2.36) is written

as

AeiWor/ao
¢(x, - 41rr (2.37)

Figure 2.4 shows two iso-contours of the real part of ¢, at angular frequency Wo,

in the acoustic near-field and mid-field of the point acoustic source. The source
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remained on the centerline,3.5 )_ from the left end of the surface. The Kirchhoff

surface dimensions and number of quadrature points were kept constant from those

used in the earlier figures.
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Figure 2.2. Predicted and exact acoustic signals at (x, R) = (5 A, 5 A). M = 0.00.

Time domain formulation.

The contours shown above the centerline are those predicted with the traditional

Kirchhoff method, while those below the centerline were calculated with (2.37).

The Kirchhoff control surface is shown as well. The contours appear to match quite

well, except for observation points inside the Kirchhoff surface, where there is a

null sound field. This null field is a consequence of the causality condition imposed

on the free-space greens function, and the nature of the Heaviside function found
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on the left side of equations (2.31) and (2.33). The effects of rectilinear motion

are shown in figure 2.5. Here the conditions are the same as those of figure 2.4,

except that the Kirchhoff surface, and all observation points, are moving in the -x

direction at M ----0.4. The Doppler effect is noticeable, as is the excellent agreement

between the exact and predicted signals.

0.25

0.20

0.15

0.10

0.05
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Figure 2.3. Predicted and exact acoustic signals at (x, R) = (5 A, 5 A). M = -0.40.

Time domain formulation.

The ability of the Kirchhoff method to capture the directivity of an acoustic

signal was also tested. In this test, the conditions used in figures 2.5, and 2.4 were

kept constant. But, the point monopole source was changed to a point dipole. In
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this case,(2.37) is written

^ IAei"J°r/a°d-'l_

where dI is a unit vector which points in the direction of the dipole's axis.

(2.3s)

10

5

-5

"10-5 0 5 10 15 20
x/'k

Figure 2.4. Real part of predicted and exact monopole acoustic field. R > 0:

Traditional Kirchhoff prediction, R < 0: Exact solution. Solid line is _(¢._/A) =

0.32. Dashed line is _(¢)_/A) = -1.63. M = 0.00. Frequency domain formulation.

Figure 2.6 shows two iso-contours of the real part of ¢, at angular frequency

Wo, in the acoustic near-field and mid-field of the point acoustic dipole. The point

dipole remained in the same position as the point monopole used above. The Kirch-

hoff surface dimensions and number of quadrature points were also kept constant.
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The contoursagain appear to match quite well, with the exceptionof observation

points inside the Kirchhoff surface. This agreementservesto validate the ability

of the traditional Kirchhoff method to capture the directivity of acoustic radia-

tion. The effectsof rectilinear motion on dipole radiation are shown in figure 2.7.

The surfaceand observationpoints againmoveswith M = -0.40. The traditional

Kirchhoff method again does an excellent job of capturing the radiated sound field.

]0

5

_kO

-5

-'10-5 0 5 10 15 20
X/k

Figure 2.5. Real part of predicted and exact monopole acoustic field. R > 0: Tra-

ditional Kirchhoff prediction, R < 0: Exact solution. Solid line is N(¢ A/A) = 0.32.

Dashed line is N(¢ A/A) = -1.63. M = -0.40. Frequency domain formulation.

The results presented to this point have shown that the traditional Kirchhoff

method does an excellent job of predicting acoustic radiation, provided the Kirchhoff
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surface is rigid, and in rectilinear motion. A suitable surfacediscretization and

quadrature schememust be used as well. Other researchershave determined the

validity of the Kirchhoff method for rigid rotating, control surfaces.2s However,

to date a deformable Kirchhoff surface has not been used to calculate acoustic

radiation. The implementation of the surfacediscretization and quadrature scheme

will be discussednext.

10

5

R/k0

-5

-10-5 0 5 10 15 20
Xfk

Figure 2.6. Real part of predicted and exact dipole acousticfield. R > 0: Tradi-

tional Kirchhoff prediction, R < 0: Exact solution. Solid line is _(¢ A2/A) = 4.27.

Dashed line is _(¢)Q/A) = -10.66. M -- -0.40. Frequency domain formulation.

The first order mid-panel quadrature scheme 5° used in the predictions shown

above produced excellent results. However, in practical studies, it is not a simple
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matter to allocate an arbitrary number of discrete quadrature points, as was done

above. Most often, the surface quadrature points are determined by the compu-

tational mesh used in the near-field CFD/CAA calculations. Thus, in order to

increase the number of quadrature points on the surface, a researcher would have

to perform an additional costly CFD calculation. It is therefore important to know

a priori the amount of discrete spatial and temporal points required for a desirable

level of accuracy.

10

5

R/_0

-5

-10_5 0 5 10 15 20

Figure 2.7. Real part of predicted and exact dipole acoustic field. R > 0: Tradi-

tional Kirchhoff prediction, R < 0: Exact solution. Solid line is N(¢ A2/A) = 4.27.

Dashed line is N(¢ A2/A) = -10.66. M = -0.40. Frequency domain formulation.

The three dimensional, frequency domain, traditional Kirchhoff method has
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beenusedto determine the relative errorscausedby decreasingamountsof discrete

quadrature points on the Kirchhoff surface. For these tests, the sourceregion is

definedby a point monopolelocated at (yo,Ro) = (0.37r A, 0). The length, Lk, and

radius, Rk of the cylindrical control surface are chosen so that the surface length is

equal to it's circumference: Rk = 0.3)_, Lk = 0.6¢r _. The surface and observer are

stationary. The observer is moved to (x, R) = (0.31r _,0.5 A), so that the majority

of the radiated sound comes from the constant radius portion of the control surface.

The number of points in the azimuthal, 19, and radial directions, 40, on the end

surfaces of the cylinder are held constant. The number of points in the axial and

azimuthal directions is then varied from 15 x 15 to 400 x 400. The number of

points per wavelength is approximated by dividing the total number of points on

the constant radius portion of the surface by it's area, and taking the square root of

the quotient. Figure 2.8 shows the relative error in amplitude as a function of the

amount of points per wavelength on the surface. For this calculation, approximately

15 discrete quadrature points per wavelength is sufficient to obtain 0.1% error. Even

the use of ,,_ 8 points per wavelength yields an acceptable relative error of 0.25%.

The errors caused by decreasing the total number of points per acoustic period

used in the three dimensional, time domain, Kirchhoff integral were also investi-

gated. The conditions used are the same as those used to generate the previous

figure, except that the number of discrete points on the control surface is held con-

stant at 100 x 100 (approximately 53 points per wavelength), and the number of

temporal points per acoustic period is varied from 8 to 256. Figure 2.9 shows the

relative RMS error in amplitude as a function of the number of points per acoustic

period. The figure indicates a relative error of approximately 0.15% with 16 points

per period and ,-_ 2 % with 8 points per period. Thus, the 64 points used in the
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remainder of this study should be adequate.
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Figure 2.8. Relative Error, -   xac,I/gexa ,verses points per wavelength for the

3D, frequency domain traditional Kirchhoff method. M = 0.00.

2.6.2 Two Dimensional Calculations

Testing of the two dimensional, frequency domain implementation of the tra-

ditional Kirchhoff integral proceeds in a similar fashion as that in the previous

section. A rectangular "surface" of length L k = 10 A, and width Rk = 4 A is used to

surround a two dimensional point acoustic monopole placed at (yo, Ro) = (3.5 A, 0).

200 quadrature points are used along the length of the rectangular surface, and 50

along the width.
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Figure 2.10showstwo iso-contoursof the real part of ¢, at angular frequency

wo, in the acoustic near-field and mid-field of a 2D point acoustic monopole. The

portion above the x axis is the prediction obtained with the Kirchhoff method, while

that below the axis is the exact solution. The exact solution is obtained via

AH_2)(kr) (2.39)
(_(2, t) = 4i

where r = IZ-Y_I, and k = Wo/ao. The portion of the Kirchhoff surface above the x

axis is shown. The figure shows excellent agreement between the exact solution and

the prediction obtained with the two dimensional Kirchhoff integral formulation.
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Figure 2.9. Relative Error, 1¢-_)exactlRMS/_)exactRMS, verses points per period for

the 3D, time domain traditional Kirchhoff method. M = 0.00.
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It is also necessary to determine the required number of discrete quadrature

points along the line in two dimensions which defines S. For this determination, a

two dimensional point acoustic monopole is placed at (yo, Ro) = (0.37r A, 0). The

length, Lk, and width, Rk of the rectangular control surface are chosen so that the

surface length was Lk ----0.6_-A, and Rk = 0.2 A, to loosely match the dimensions

used in the similar three dimensional test. The observer is chosen as (x, R) ---

(0.37r A,0.15)_), so that again the majority of the predicted sound came from the

constant R portion of the surface. The number of points along the width of the

surface, 80, is held constant. The number of points in the lengthwise direction is

then varied from 10 to 460. The number of points per wavelength is then determined

by dividing the total number of points in the lengthwise direction on the surface by

it's length.

Experience has shown that a larger number of quadrature points are required

per wavelength in the two dimensional version of the Kirchhoff integral than in three

dimension. To help alleviate the burden caused by this requirement, a higher order

quadrature algorithm, Gauss-Legendre quadrature, 51 is employed. The increased

accuracy afforded by the use of this quadrature method does provide for some in-

crease in the accuracy of Kirchhoff predictions. As mentioned previously, acoustic

data on the surface is most often obtained through the use of a CFD calculation

in the acoustic near-field. The researcher performing acoustical analysis may not

have control over the amount of grid points and temporal discretization in the CFD

calculation. Furthermore, mesh refinement is often prohibitively expensive. How-

ever, there are methods available which can help increase the accuracy of Kirchhoff

calculations using CFD inputs.
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Figure 2.10. Real part of predicted and exact 2D acoustic monopole field. R > 0:

Traditional Kirchhoff prediction, R < 0: Exact solution. Solid line is _(¢/A) =

0.01. Dashed line is _(¢/A) = -0.01. M = 0.00.

Meadows and Atkins 52 have developed a procedure to increase the accuracy of

Kirchhoff integral predictions without performing a mesh refinement. This proce-

dure, which they refer to as "mesh enrichment," consists of the addition of quadra-

ture points on the Kirchhoff surface. The data on the additional points is obtained

through a polynomial interpolation over the CFD calculation data. A high order

quadrature algorithm is then used with the additional data points. They showed

the ability to obtain accurate acoustic predictions from relatively coarse-grid CFD
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calculations.

Figure 2.11 shows the relative error in amplitude as a function of the amount of

points per wavelength in the lengthwise direction on the surface. Second, fourth, and

eighth order Gauss-Legendre quadrature were used to solve the Kirchhoff integral

on the control surface, with the values of the integrand determined at the mesh

enrichment locations through third order polynomial interpolation.

10 °

10 -_

_. 10 .2

,,,,,,-i

10 -3

o Second Order

• Fourth Order

--o=-- Eighth Order

10 -4
0 25 50 75 100

Points/Wavelength

Figure 2.11. Relative Error, I_b-¢exactl/¢ezact, verses points per wavelength for the

2D, frequency domain traditional Kirchhoff method. M = 0.00.

In these calculations, the second order quadrature scheme produced 1% error

with approximately 35 points per acoustic wavelength, while the eighth order scheme

produced the same error with approximately 20 points per wavelength. Since there
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is no additional cost in the CFD predictions,and very little additional cost in the

Kirchhoff calculations, the meshenrichmentprocedure is a very beneficial means

of producing accurate Kirchhoff calculations. It should be noted that in this case

more points are required per wavelengththan in the three dimensional versionof

the code. However,this is not a burden, sincethe dimension of the problem has

beendecreasedby one.

2.6.3 Related Issues

The mesh enrichment procedure discussed above is an important development

in surface integral prediction methodology. A similar procedure, "quadrature adap-

tation," has been developed by Brentner. 5° In this algorithm, the amount of tem-

poral or spatial quadrature points is increased or decreased, based on solution es-

timates, during the quadrature procedure. He recommends using an error approxi-

mation in the algorithm to increase efficiency as well.

Since the calculations shown in this chapter were based on linear inputs at an

arbitrary number of points, the mesh enrichment and quadrature adaptation devel-

opment were not actively pursued in the three dimensional calculations presented in

this work. The mesh enrichment algorithm is straightforward to implement in two

dimensions, however, so it is used in the rest of the two dimensional calculations

shown here. The reader should also be aware that these quadrature techniques may

be necessary in acoustics calculations which utilize output from a CFD code as

inputs to the Kirchhoff routine.



Chapter 3

The Modified Kirchhoff Method

The main focus of this work is the development of modifications to the tra-

ditional Kirchhoff method so that it is more applicable for use in jet aeroacoustic

calculations. These modifications are outlined in this chapter. The improvements

are based on the Ffowcs Williams-Hawkings equation used in the prediction of noise

generated by moving surfaces. Additionally, the Kirchhoff integral will be shown

to be equivalent to a solution of the Ffowcs Williams-Hawkings equation, under

certain conditions.

3.1 Porous Ffowcs Williams-Hawkings Equation

In this section the Ffowcs Williams-Hawkings equation is for a moving, porous

surface is presented. The original developments of Ffowcs Williams and Hawk-

ings were based on an impermeable surface, but a porous surface version was pre-

sented by Ffowcs Williams in reference 53. The derivation is similar to that of

37
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Lighthill's equation, 1° except that there are surfaces of discontinuity that must be

dealt with. These discontinuities are again handled through the use of generalized

functions. 36-38

Let the surface again be defined by f(Z, t) = 0 such that f > 0 in the fluid

outside the surface, and f < 0 inside the surface. The surface may be a real, solid

surface, or a computational control surface. The mathematics are identical. The

continuity equation is

0 0

0-7(p- po)+ _xj (_j) = 0 (3.1)

Here, p is the fluid density, and ui are the cartesian components of the fluid velocity

vector. Subscript o denotes evaluation of the variables at ambient conditions. To

create an equation valid over all space and time, (3.1) is multiplied by the Heaviside

function, H(f). That is, ambient conditions are mathematically enforced inside the

surface.

__0 o
ot [(p- po)g(/)] + _ (_jg(f)) = p(uj - vj) og(y_______)Oxj+ P°v_OY(f)Ox_(3.2)

where g is the local velocity of the surface

The momentum equation is

Vj --

1 O/

_j at

(pui)+ _ (puiuj+ (p- Vo)_j - oil) = 0 (3.3)9-7

where p is the fluid pressure, aij is the viscous stress tensor, and _ij is the Kronecker

delta. The Heaviside function is used to make this equation valid over all space,

0 0
(puiH(f)) + _ [(puiuj + (p - Po) 5ij - aij) H(f)]

= [(P - Po)_Sij - aiJ + pui (uj - vj)] OH(y)''''a (3.4)

Oxj
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Taking the time derivative of (3.2), subtracting the generalized divergence of (3.4),

aoV [(p- po)H(f)] from both sides yieldsand subtracting 2 2

0 2 0

[_ [fig(f)] - Ox-_xj [TijH(f)] + _ [Lib(f)]

cO cO (3.5)
+ _ [:oVnb(f)]+ _ [p(_.- v.)5(f)]

0

cO_[/_(_,,- v,,)a(:)]

where ff = p - po, p_ = a2(p - po), un = uiFti, vn = vifii. Lighthill's stress tensor

and the surface loading are

Tij = puiuj - aij + ((p - Po) - a2p ') 5ij

Li = - ( (p - po ) 5ij - aij ) _j

Note that the definition of p_ is different here than that normally encountered in

the literature. (p- po = a2op_ only in linear, isentropic regions.) Equation (3.5)

is the Ffowcs Williams-Hawkings equation is for a moving, porous surface. The

first three terms on the right side of equation (3.5) compose the original Ffowcs

Williams-Hawkings equation, while the last two terms are the contributions to the

radiated sound caused by the porosity of the surface. Note also that if there is no

surface, g(f) = 1, 5(f) = O, and equation (3.5) is identical to Lighthill's equation.

Equation (3.5) is not easily employed in computational simulations as shown

above. This is due to the derivatives being taken at the observer time and location.

Farassat, 24 solved the first three terms on the right side of (3.5) with the free-

space Green's function for the wave equation (2.9). With the additional terms, the

solution to (3.5) is

0 2 CO

4_p'g(f) - cOxicOx_f _jH(y) a(g),t_/+ _ f Lia(f) 5(g)_

cO (3.6)
+ 0 f poV.5(f) 5(g) d_7 + _ f p (u,_ - v.) 5(f) 5(g) d_/

cO
[ pui (un - Vn) 5(f) 5(g) dff

cOxi d
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He then expressed the resultant derivatives in terms of the source time and location.

He referred to this solution as formulation 1A. The expression of the solution in this

manner makes it easily applicable in numerical predictions. 25 Following Farassat's

derivation, while accounting for the additional source terms gives

47rp,(2, t)H(f) = fs [ AI+A3 [ A2 + A4 dSr(l_Mr) 2 dS+/s r2_-Mr)2.
T* T*

r (1 - Mr) Oy--_j Jr dV

where

A1 -- poiJn + Li?i/ao

A2 = Li?i - LiMi + A (1 - Mr) -1 (floVn + LiFi/ao)

A3 = p (Un - Vn) ./_4i?i

A4 = p(un - vn)(ur - uiMi) + p(Un - Vn)A (1 + _4r) (1 - Mr) -1

+ (1 + Mr)(p (/t_ -_).) + _(Un - v.))

A = (r2_Ii?i + aoM,.- aoM 2)

Here .Mi = ui/ao is the local Mach number of the flow at the surface, and f14_ is

the flow Mach number in the radiation direction. A dot over a quantity indicates

derivation with respect to source time. In the volume integral, Mr is the local Mach

number of the motion of the source coordinate system with respect to a stationary

reference frame, in the radiation direction. Note also that the definitions of f/n and

f/_ are different here than those presented in the last chapter. The terms A1 and

A2 compose the original formulation 1A. The terms A3 and A4 are the contribution

to the radiated sound from flow through the surface. These terms were presented

for the first time by the authors in reference 33. It should be noted here that pt

is the acoustic pressure perturbation, p- po, only in the linear, acoustic far-field.

More details on the derivation can be found in references 24 and 25.
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Equation (3.7), an extension of Farassat's formulation 1A, can be used in the

calculation of far-field sound based on near-field aerodynamic data. This may be

an attractive alternative, because there is no need to calculate spatial derivatives

at the surface, as there is with the Kirchhoff method. Additionally, terms A3 and

A4 can be easily added to an existing FWH prediction code (e.g. WOPWOp25). In

the next section, equation (3.6) will be modified in order to produce an equivalent

to (3.7). This equivalent can then be used with existing Kirchhoff codes.

3.2 Modified Kirchhoff Equation

At this point it is desirable to re-write equation (3.5) in a different form.

The new form will produce an integral solution equivalent to the Kirchhoff integral

solution to the wave equation, provided pr = a2p_ is used as the dependent variable.

Additional terms are also introduced by the porosity of the surface.

To derive an equivalent expression, first note that

O O O 0

[Li6(f)] - _ [puiun] = Oxi [Tij?tj6(f)] - _ [a2p'_tj6(f)]

0 o o-5i[pov._(:)]+ -_ [-_._(f)] = -o-7

Equation (3.5) can then be re-cast as

0 2 0

[_ [a2p r g(f)] - OxiOxj [TijH(f)] - _ [T,j_jS(f)]

o (f)l - 0 [p'v:(s)]
Oxi ta'P'£h6"-" a -_

0 0

+ _ [puny.a(1)]+ -_ [_.6(f)]
The chain rule allows the last two terms to be written as

0 0 0 0

[puivn6(:)] + -'_ [pun6(f)] : _x/[pui] Vn6(f) + pui-_x _ [Vn6(Y)]Oxi
0 0

+ _ [p_,_]_5(f) + _i_ [_i5(:)]

(3.8)
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Note also that

o_i?-_x_[vn_(/)]+ _iN [_i_(/)l= -p_i _ - g/

and, from the conservation equations,

0
O---t[pui] fiiS(f) = - --

Note also that

0 Op _

Oxi [pu/] vnS(f) -- Ot VnS(f)

o _6_j_ _i_]_6(f) - o
Oxj

OTij a20p _ _.
Oxj fiiS(f) - o-_nd(f)

[puiuj] hiS(f)

=0

(3.9)

(3.10)

02 0 _ 02Tij (3.11)OxTOx j [TijH(f)] = _ [TijfijS(f)] + fii6(f) + H(f) OXiOXj

The combination of equations (3.8)through (3.11) leads to

[_ [a_p'H(f)] = [:_ [p'H(f)]

019' 1 . Op' _

-}- --.Win-= - ao Otz) 5(f)

1 0 0 [p'fiiS(f)] (3.12)
ao Ot [Mnp'5(f)] -

O_T_j
+ H(f) OxiOxj

The subscript x on the temporal derivative in the first term is included to denote

derivation with respect to the observer time, with the observer coordinates held

fixed. Note that the first three terms on the right side of (3.12) are identical to

those on the right side of (2.21), with ¢ = p_ = a2p _. The nomenclature and

similarities between the Kirchhoff and FWH approaches are shown in figure 3.1.

The equivalence of (3.12) and (3.7) indicates that the Ffowcs Williams-

Hawkings and Kirchhoff integrals are equivalent solutions to the same equation.
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The traditional Kirchhoff integral, from the previous chapter, is a solution to the

homogeneous wave equation, while the FWH equation is a solution to an inhomoge-

neous (Lighthill's) wave equation. Ffowcs Williams and Hawkings is mention that

the impermeable surface forms of (3.12) and (3.7) are identical, while Farassat 36

says there is "considerable cancellation and simplification of the source terms" in

going from equation (3.12) to (3.7). Much of the simplification is lost when the

surface is not impermeable.

_Kirchhoff Surface Solid Surface --7

(y,x) (y,x) [

Kirchhoff _ / FW-H

Approach _ Approach

Observer

(x,t)

Figure 3.1. Schematic of similarities between Kirchhoff and Ffowcs Williams-

Hawkings methods.

3.2.1 Time Domain - 3D

Equation (3.12) can now be solved to produce a formulation the authors have

referred to as the modified Kirchhoff formula. The derivation is similar to that of

Farassat and Myers, 27 and the previous chapter. The free space Green's function is
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used to solve (3.12),

47r_(2, t)=- f lr\-_-n(OP'+ 1MnO__p_)5(f)6(g)d_dTa°aTy/

10

aoOt f _M_p'5(f)5(g)d/7dr
(3.13)

0

02 ..

Where _ = p'H(f). Through the use of equation (2.23) the divergence operator can

be converted to a temporal derivative in the source time. This leads to

47r_(2, t) = - f 1(0p'1 O0-_y)r k-_n + Mn 5(f)a(g) d/TdT

1 (p, cosO) 5(f)5(g) d/TdT

(3.14)

+ _-_'/rl0 1[(co s 0- e/TeT
02 ..

+HCf)Ox xjf  - (g)e/TeT
The temporal derivative is transformed to source time and brought inside the in-

tegral. /7 is transformed to (u 1, U2,U3), and V is transformed to g. The Jacobians

of the transformations are 1 and 1/(1 - Mr) respectively. Integration over _ and g

gives

1 0p'
1 (Op' ._oMn___vy ).47r_(2, t) = /D(S){ r(1-- Mr) \_n-n + gv_?

(p' cos o)
+ r2(1 - Mr)

(3.15)

1 0 [(cosO-Mn)p'+ _r_=-_.]}+
aor(1- Mr) aT (1 _ x/g(2)J du' du 2

T*

/ [ (11 1- Mr) Ou--u-iOuJJT* dul du2 dua
f=ua>0

Because u 3 _ 0 in the volume integral, the retarded time 7" is now the root of

g = T-- t + 12- ff(u 1, u 2, ?.t3, T)[ = 0 (3.16)
ao
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The temporal derivative can be evaluated analytically, to obtain the moving, porous

surface version of the modified Kirchhoff formula,

/o[2-- E1gv_ P 2v_
47raop(x,t) = 4zr:5(2, t) = (S) r_ - Mr) + r 2 (1 - Mr)

(3.17)
1 °q2T/j "] 1

-- du du 2 du 3
+ f r(1- M_)OyiOyjJ,.
u 3 >0

E1 and E2 are presented in the previous chapter, equation (2.28). (In El, ¢ must

be replaced by p' = a2p'.) The form of (3.17), without the volume integral, was

presented by Farassat and Myers. 27 The addition of the volume integral represents

a new formulation, and is of major significance for this report. This additional

term can readily be added to an existing Kirchhoff prediction code to make it more

applicable in cases where the Kirchhoff surface can not be placed in a linear region.

A simplified form of (3.17) for a stationary, rigid surface was presented by the

authors in reference 32. The full form was presented in reference 33. Recently,

di Francescantonio 54 presented a formulation equivalent to (3.7). He refers to this

formulation as the "Kirchhoff-FWH" equation.

3.2.2 Frequency Domain - 2D

The modified Kirchhoff integral formula for a stationary, rigid, porous Kirch-

hoff surface can also be derived for the two dimensional Helmholtz equation. The

derivation follows that presented above and in the previous chapter. The generalized

Kirchhoff equation in the frequency domain is

_2

Ox 2 (_H(f)) + k2_H(f) = - --

-g
_nS(f) - [_,5(f)]

02Tij
+ H(f) cOx----_j

(3.18)
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where _ is the Fourier transform ofp'. Solution of this equation with the appropriate

free-space Green's function (2.12), gives the modified Kirchhoff formula in the 2D

frequency domain,

A
- / _?ti H_2)(kr)5(f)d_

(3.19)0 2

+ g(f) ax_xj If..o_JH_2)(k")_

The divergence operators act only on the Hankel functions, so (3.19) can be written

as

4ip(x'w)H(f) =-/s[O!3H_2)(kr)-c°sOkpH_2)(kr)]dS_n

(3.20)

f>0

where the integralover S isagain understood to be a lineintegral,and that over V

a surface integral in two dimensional space.

3.3 Uniform Rectilinear Motion

3.3.1 Time Domain

The techniques used in the previous chapter to present the traditional Kirchhoff

integral for the case of uniform rectilinear motion can now be used to present the

modified Kirchhoff integral for the same case. This development was presented by

the authors in reference 33. The control surface is again assumed to be rigid. Setting

f/, _, it, etc. to zero, and expressing the integrals in a frame of reference which is

moving with the surface and observer allows equation (3.17) to be expressed as

=47ra°p(x't)=i.[r(l-Mr) + r' _=il/1"r)Jr,
4r_(:_, t) 2-- E:I p'E2 ] dS

(3.21)

i ]+Jf r(1 - Mr) g_iO_jJ
dV

f>0 r*
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E1 and E2 are the same as presented previously in equations (2.28)and (2.32).

(¢ must be equal to p'.) The retarded time is again the root of equation (2.30).

This modified Kirchhoff formula is useful in studies of jet noise in which there is

a non-zero free stream velocity, and significant nonlinearities at and outside of the

Kirchhoff surface.

3.3.2 Frequency Domain

The frequency domain counterpart to equation (3.21) is easily derived through

the use of the preceding analysis. This equivalent is given by

2_
47r_(Y_,w)g(f) = 4zcaop(z,w)H(f )

r(1---Mr) + r2(_-_lr) dS (3.22)

1 02T_j ]
+/ei_r/a° [r(l _ Mr) Oy.--_jj dV
l>0

where _ is the Fourier transform of pl. K1 was presented earlier in equation (2.34).

Thus, both frequency domain and time domain formulations are available for use

in jet noise calculations.

3.4 Volume Integral

To this point little mention has been made of the volume integral that arises

from the development of the modified Kirchhoff integral formulation. Solution of

this volume integral is identical to solution of the integrals that arise from the use

of Lighthill's acoustic analogy. 1° Because of this, some methods previously used in

jet noise studies which employed acoustic analogy predictions may be of use. Here

a modified form of the exact volume integral is presented, as well one means of

approximation of the volume integral solution.
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3.4.1 Exact Solution

As presented in (3.17), the volume integral is the equivalent to that presented

by Lighthill in his original work. i° However, it is possible to cast this integral in a

different form. The new form makes it possible to obtain more accurate predictions

from approximations to 7_j. The volume integral contribution to the overall solution

is

0 2 ..

4 p'(i,t)- ox oxj] (3.23)
Farassat and Brentner 55 showed that the double divergence can be expressed in

terms of temporal derivatives

1 0 (3r, rj - 5_j)_(g)
0 2 1 0 2 ri (g) 4--

OxiOxj -- a 20t 2 ao -_ r 2
(3.24)

+ (3_i_ - 5ij)5(g)
r 3

Using the relation

[10 (1 - Mr) x= O_ _.

allows (3.23) to be cast in terms of temporal derivatives at the source time,

,_. 1 1 0 (1 Mr) 07" r(1 Mr) d_4zrp_(x,t) = _oo (1 - M_)OT -- -- r

if
+UoJ (1- Mr)Or \_---Mrr) r*

4- f r3(l_ Mr) ] dg
T*

where Trr = ?iTij?j. Here Mr is the local Mach number of the motion of the source

coordinate system with respect to a stationary reference frame, in the radiation

direction. After analytical derivation and some algebra (3.25) can be expressed as

41rffv(Z_, t)= a2r( 1 = /_r) 3 -_- 4- dV (3.26)aor2(1 - Mr) 2 r3(1 - Mr) r*
f>o
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The terms B1, B2, and B3 are presented in the appendix to this chapter. The

contribution from B1 in (3.26) is the often used far-field approximate solution to

Lighthill's equation. B2 and B3 are important only in the near-field and mid-

field. Their contribution is significant, because it allows for acoustic predictions in

a region where CFD or empirical data (the data used on the Kirchhoff surface) is

available. A comparison can then be used to validate the surface integral method-

ology. Brentner 56 has derived an expression equivalent to (3.26) for use in Ffowcs

Williams-Hawkings based aeroacoustic predictions.

3.4.2 Source Approximations

In many cases, it will not be possible to determine Tij in the entire region

where it has significant magnitude. If it is possible, the Kirchhoff surface can be

extended to include the entire source region, and the volume integration will not

be necessary. One means of approximating Tij outside of the control surface, and

solving the subsequent volume integrals, is presented here. A similar approximation

was presented by Mitchell, et. al. 3°

For simplicity, Tij is expressed as _j through Fourier transformation, and the

Kirchhoff surface is assumed to be rigid, and either stationary or in rectilinear

motion. T* is then uniquely defined, and the effect of the temporal derivatives is

simplified considerably. For example,

.J a2or(1-Mr) 3 27rJao 2J r(1-Mr) 3 dffdw
I>o -co f>O

If enough of the sound production region is contained within the surface, Tij in the

remaining region can be approximated by

7'ij '_ Tij.e i_'_u3 (3.27)
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where Tij8 is Tij evaluated at the control surface, and gij is a complex wavenumber

with positive imaginary part. (Repeated indices on aij are not summed.) This

approximation is crude, at best, and most likely not applicable over a wide range

of problems, but it serves to demonstrate one means of solving the volume integral

with data which is available on the Kirchhoff surface, gij is assumed to be constant

with u 3 and

-i OTi_/Ou3
aij = Tij Is

Expanding the integrand in a Taylor series about u 3 -- 0, and retaining dominant

terms yields

rir/j rj

/ a2r(1- Mr) 3
f>0

dV- ^ r( co 27c J a2o If _J8 _ O)n
-co n=0 L ao

X f°° (_i_t3)neitqju 3rt[du3] r(lf'if'jeiwr/a°-Mr) 3 dul du2dw
0

where r, _i, _j and 0 are now evaluated at the surface.

Euler's integral 4°

OO

F(z) = f_z-le-¢d_

The integral over u 3 is

r(n + 1) = n!

Using this in the summation with z -- n + 1 gives

_"i Tij _'j

f ev
/>0

__ (W COS O_n 7"iT"je iwr/a°
1 7w 2 iTij _\-a-_iJ I _(l_--_r) 3

duldu2dw
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If [wcosO/aonij[ < 1 then the summation can be expressed in closed form,

_'iTijrj

f <0--(7=  ,13 ey
.f>o

aogij ] _ijr(1 -- Mr) 3
dS dw

(3.28)

The volume integral is now expressed in terms of quantities available on the Kirch-

hoff surface. The other integrals in (3.26) can be approximated in a similar fashion.

If ]wcosO/aogij[ _ 1, the assumption of exponential decay in the source terms

in equation (3.27) is not valid. This may thus be used as one criterion in the

determination of a suitable location for the Kirchhoff surface.

Other volume integral approximations may be more appropriate. Brentner 56

gives one means of calculating the quadrupole noise in rotorcraft high speed im-

pulsive noise studies. Wu and Akay 57 have re-written the volume integral terms

in the Ffowcs Williams-Hawkings equation to show their effect on sound radiated

by vibrating solid bodies in motion. They found that the quadrupole terms in the

volume integral can cancel some terms in the surface integrals. While this cancel-

lation is most likely lost when dealing with a porous surface, their analysis, and

that of Brentner, may be useful in developing new techniques for approximating

and calculating the volume integral in the modified Kirchhoff formulation.

3.5 Significance of Developments

At this point it is necessary to stress the significance of the developments pre-

sented in this chapter. First, note the equivalence of equations (3.7) and (3.17).

This equivalence indicates a unification between Lighthill's acoustic analogy, 1° the

Ffowcs Williams-Hawkings equation, is and the Kirchhoff formulation. 27 Thus, if
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there is no surface in the modified Kirchhoff equation, the resultant equation is

identical to Lighthill's equation. If the surface is solid, the equation is then equiva-

lent to the Ffowcs Williams-Hawkings equation. Also, if the surface is placed in a

linear region, the equation is equivalent to the traditional Kirchhoff formulation.

A versatile code which can switch freely between Ffowcs Williams-Hawkings

and Kirchhoff based predictions can be developed. This will allow for the most

efficient and accurate calculations for any given CFD input. The development of

the modified Kirchhoff integral was also presented in Fourier space, and in two

dimensions, to aid in predictions where those requirements or special conditions

hold. One means of estimating the volume integral portion of the modified Kirchhoff

of Ffowcs Williams-Hawkings predictions was presented as well.

3.6 Validation Calculations

Test calculations have been performed in order to validate the theory and

numerical implementation of the modified Kirchhoff method. Results of these cal-

culations are presented in this section.

3.6.1 Stationary Kirchhoff Surface

To determine the validity of the modified Kirchhoff method it is necessary

to compare known solutions to the governing equations with the results obtained

through the Kirchhoff integral. The calculations shown were developed with jet

noise predictions in mind, but the derivations above remain applicable for general

acoustics problems.

A source distribution which resembles that encountered in jet noise predictions
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can be defined by

_ij = exp[i_ij lyl- yol- R/h] (3.29)

where (yl,R) are the near-field source cylindrical coordinates. If n and Wo are

chosen properly, (3.29) loosely approximates the source distribution in a round jet

forced at frequency Wo. Figure 3.2 shows the amplitude of Tn on the centerline,

(R = 0). If the source distribution is defined by (3.29) then equation (3.27) is

exact. The radiated sound can then be determined through a solution of Lighthill's

equation. The volume integration is not a burden, so long as only one frequency,

Wo, is considered. The geometry of the volume integration, with respect to the

cylindrical control surface and source distribution, are shown in figure 3.3.
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Figure 3.2. Centerline amplitude of Tn, calculated with equation (3.29).
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Figure 3.4showsthe real part of iofor _ = (6.26+ i 0.838)/A. The distribution

is stationary. Wo is chosen to correspond to the forcing frequency of a jet simulated

previously by the authors. 32 The sound field is symmetric about Xo -- 8.62 A, and h is

set to 0.133 A. The necessary volume and surface integrals were calculated with first

order mid-panel quadrature. 5° To ensure that the entire source region is captured,

the dimensions of the volume integration domain, and number of quadrature points,

are double those of the Kirchhoff surface. (The volume integral domain is a cylinder

of length 34.48 A, and radius 2.66 A. 260, 80, and 108 quadrature points were used

in the axial, radial and azimuthal directions.) Use of a larger domain does not

change the volume integral solution. For the purposes of the comparisons here, it

is considered exact.

2R k

_.J

Volume Integral Region

f Kirchhoff Integral

- R k

L k

-'--_L

Figure 3.3. Kirchhoff surface and volume integral geometry.

The source distribution described above (3.29) was initially used as an addi-

tional test of the traditional Kirchhoff formulation. If the entire source region is

enclosed within the Kirchhoff surface, then equation (2.31) should be able to predict

the mid-field and far-field sound. Figure 3.5 shows the predicted and exact acous-
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tic signals at (x, R) = (20 A, 2.5 A). The Kirchhoff surface was a cylinder of length

L k = 17.24 A and radius Rk -----1.33 ,_. The amplitude of T is very small beyond the

ends of the cylinder. Thus, noise production in these regions can be ignored with

no effect on the calculated sound signals. The surface was discretized with 130, 40,

and 54 uniformly spaced points in the axial, radial and azimuthal directions. The

addition of more quadrature points on the surface had little effect on the solution.

.
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Figure 3.4. Exact sound field (real part), calculated with equation (3.29). Contours:

min = -0.340, max = 0.340, increment = 0.0283. Negative contours are dashed.

M = 0.00.

The excellent agreement between the "exact" and Kirchhoff solutions serves to

validate the Kirchhoff methodology when the computational surface is placed in a

fully linear region. Also shown in the figure is the signal calculated with a cylindrical

Kirchhoff surface without the end surfaces. The prediction which employed a partial

Kirchhoff surface gave substantial amplitude and phase errors. "Open-surface"

Kirchhoff methods (e.g. those used in references 29 and 30) are not appropriate
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acousticprediction tools when the observationpoint lies closeto the jet axis.

Next, the Kirchhoff surfacewas reducedin size,so that it no longer enclosed

the entire sourcedistribution. The length of the cylindrical surfacewas reduced

to L k = 10.61 A, while the radius, and number of discrete points on the surface

remained the same.
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Figure 3.5. Predicted and exact acoustic signals calculated with the traditional

Kirchhoff method at (x, R) = (20 A, 2.5 A). M = 0.00.

Figure 3.6 shows the exact and predicted sound signals, at the same observation

• point, obtained with the modified Kirchhoff method. Two levels of approximation

in the volume integration, as well as the traditional Kirchhoff solution, are shown.

Omission of the volume integral leads to large amplitude errors, while the approxi-
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mation given in equations (3.27) and (3.28) slightly over-predicts the amplitude and

reduces the error considerably. If the "exact" volume integral solution (outside of

the Kirchhoff surface) to Lighthill's equation is used in (2.31), the error is reduced

to almost zero. This validates the modified Kirchhoff formulation for this simplified

test case, and a stationary surface.
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Figure 3.6. Predicted and exact acoustic signals calculated with the modified Kirch-

hoff method at (x,R) = (20)L2.5 A). M = 0.00.

The error field (Pcatc -Pezact) to the right of an open Kirchhoff surface (Lk =

10.61A) is shown in figure 3.7. It is evident that jet noise calculations using an

open surface will not be acceptable in the region downstream of the surface. Figure

3.8 shows the error field produced by the full modified Kirchhoff method, using the
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approximate volume integral and the full Kirchhoff surface. The error is reduced

considerably. (Note the change in contour spacing.)
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Figure 3.7. Error field (real part) obtained using an open Kirchhoff surface and the

traditional Kirchhoff method. Contours: min = -0.270, max -- 0.190, increment --

0.020. M = 0.00. Negative contours are dashed.

3.6.2 Rectilinear Motion

The test calculations presented above were also applied to a source distribution

in rectilinear motion. The source distribution given by (3.29), the Kirchhoff surface,

and all observer points, are assumed to be moving in the -yl direction at M = 0.40.

Figure 3.9 shows the real part of i5 for t_ij ---- (16.67 + i0.40)/)_ for all (i, j). 15 is

normalized by the maximum amplitude of Tll in the source distribution, yo and h

are now set to 8 A and 0.088 )_ respectively.
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Figure 3.8. Error field (real part) obtained using a closed Kirchhoff surface and

the full modified Kirchhoff integral. Contours: rain = -0.055, max = 0.075,

increment -- 0.010. M = 0.00. Negative contours are dashed.

The source distribution is again used to validate the traditional Kirchhoff in-

tegral formulation. If the entire source region is enclosed within the Kirchhoff

surface, then equation (2.27) should be able to completely predict the sound radi-

ated to the far-field. Figure 3.10 shows the predicted and exact acoustic signals

at (xl, R) = (18)_, 1.0 A). The signals are normalized by the maximum disturbance

amplitude at the observation point. The Kirchhoff surface is a cylinder of length

Lk = 17.0 A and radius Rk = 1.2 )_. The surface is discretized with 130, 30 and 90

uniformly spaced quadrature points in the axial, radial, and azimuthal directions.

These values are chosen so that the order of accuracy in the numerical quadrature

has little effect on the calculated signals. Mid-panel first order quadrature 5° is

again used to solve the integrals numerically.
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Figure 3.9. Exact sound field (real part), calculated with equation (3.29). Contours:

min = -0.045, max = 0.045, increment = 3.75 × 10 -3. M = -0.40. Negative

contours are dashed.

As discussed in the previous chapter, higher order quadrature schemes with

"enrichment ''52 have been programmed, but the numerical scheme used was deter-

mined to be sufficient to validate the theoretical development here. Also shown in

the figure is the signal calculated with a cylindrical control surface without the end

surfaces (the region where traditional Kirchhoff predictions lose validity in jet noise

calculations). The prediction which employs the full control surface is nearly exact,

while the partial surface gives substantial amplitude and phase errors. "Open-

surface" Kirchhoff methods are again shown to be inappropriate in cases where the

observation point lies in a region near the jet axis.

Following the process described above, the control surface is decreased in size,

so that it no longer encloses the entire source distribution. The length of the cylin-
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drical surface is reduced to Lk ---- 10A, while the radius of the surface remains

constant. The number of discrete points in the axial direction is reduced to 75.

Figure 3.11 shows the exact and predicted sound signals, at (xl, R) = (18 A, 1.0 A),

obtained with the modified Kirchhoff method. The open surface is again seen to pro-

duce large amplitude and phase errors. The approximated volume integral slightly

reduces this amplitude error, as well as the phase error. If the "exact" volume inte-

gral solution (i.e. that solved numerically outside the Kirchhoff surface) is used in

the modified Kirchhoff formulation, the amplitude and phase errors are reduced to

almost zero. This serves to validate the modified Kirchhoff formulation for surfaces

in rectilinear motion. The signals shown are insensitive to the value of Lk, since

(3.27) is exact for the given source distribution.
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Figure 3.10. Predicted and exact acoustic signals at (Xl, R) = (18 _, 1.0 A).
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Figure 3.12 shows normalized signals produced with the modified Kirchhoff

integral at (Xl, R) = (8 A, 5 A). At this observer location, most of the signal is

produced by the constant R side of the cylindrical Kirchhoff surface, so even the

open surface can produce an effective signal. The approximate volume integral is

again seen to improve the signal, and the "exact" volume integral produces almost

no error.

1.50

1.25

1.00

0.75

0.50

0

0

0

0

0

0 •

• Approx. Volume Int. •
• Exact Volume Int. •

o Open Control Surface •

Exact Solution

0

0

0

0

0

0

• • • O

0

0

0

0

0
0

0.25 0.5 0.75 1

time/period

Figure 3.11. Predicted and exact acoustic signals at (x:, R) = (18 A, 1.0 A).

The error field (Pcatc -Pexact) produced with an open Kirchhoff surface (Lk =

10.0A) is shown in figure 3.13. The control surface is shaded. It is evident that

aerodynamically generated noise calculations using an open Kirchhoff surface in

rectilinear motion will not be acceptable in some regions. Figure 3.14 shows the
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error field produced by the full modified Kirchhoff method, using the approximate

volume integral. The error is reduced considerably.
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Figure 3.12. Predicted and exact acoustic signals at (Xl, R) --- (8/_, 5 )_).

The simple source distributions used in these calculations do not closely match

those found in real jets, but it serves to verify the validity of the use of the modified

Kirchhoff integral in certain cases. These cases include those where the source region

is extensive enough to prohibit placement of the Kirchhoff such that it surrounds all

sources. The results presented in this section were all produced with the frequency

domain formulation of the three dimensional modified Kirchhoff integral. Similar

results have been obtained with the time domain, and two dimensional versions of

the Kirchhoff integral. Results of predictions of the noise due axisymmetric and
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two dimensional supersonic jets are presented in the next chapter.
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Figure 3.13. Error field (real part) using an open control surface. Contours: min -

-0.01, max = 0.01, increment = 8.70 x 10 -4. Negative contours are dashed.
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Figure 3.14. Error field (real part) with approximate volume integral. Contours:

min = -0.01, max = 0.01, increment = 8.70 x 10 -4. Negative contours are dashed.
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Appendix

The terms B1, B2, and B3 in equation (3.26) are as follows.

(1-Mr) (1- Mr) 2

1 [-]l;/r (3Trr- Tii)- Tij (IQii'j + Mji'i) - Tii+ (1- Mr)

+ T_j(M_e_j - M_ej- MFi)]

1 [Tiji'ii'j (M 2 - M 2 - 3Mr) - 3Tij/I;/r (Mii'j + Mji'i)+ (1- Mr) 2

+ T_r (3)1;/_ + 12Mr/I;/r - MiMi + 2M]I;/)I

l [4-]_IrTrr(M2r-M2)]+ (1- Mr)3

Ba = 3T,.,. - Tii

1 [Mr (9T_r - 2T/i) - 3Tij (Mii'j + Mji_i)]+ (1 - Mr)

1 [Tr,-(12M ] - 3M 2) - Tii (M ] - M 2)+ (1- Mr)2

+ Tij(2MiMj - 6Mr (Mini + Mj_'i))]

1 [Trr(M2_M2)(9Mr+3)+ (1- Mr) 3

+ Tq (M 2 - M 2) (1- 3 (Mini + Mj_i))]

l [3Trr(M2r-M2)]+ (1- Mr) 4



Chapter 4

Jet Noise Predictions

The mathematical and numerical methods and techniques derived in the pre-

vious chapters have been applied in sample jet noise calculations. The results of

these calculations are presented in this chapter.

4.1 Axisymmetric Round Jet

The authors have obtained data from a near-field jet noise calculation per-

formed at the NASA Lewis Research Center. The calculations were performed

using the Large Scale Simulation code of Mankbadi, et. al., 7,s based on the 2-4

MacCormack method of Gottlieb and Turkel. 5s The calculations simulated an ex-

cited, Mach 2.1, cold (jet total temperature -- ambient temperature = 294K), round

jet of Reynolds Number Re = 70000. The jet exit variables were perturbed at

a single axisymmetric mode at a Strouhal number of St = 0.20. The amplitude

of the perturbation was 2% of the mean. The jet flow field and all observers were

66
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assumed to be static. These conditions were imposed in order to approximate the

experimental conditions in the study of Troutt and McLaughlin. 59 However, since

the numerical simulation assumed axi-symmetry in the flow and acoustic fields,

the correlation between numerically predicted and experimentally measured acous-

tic properties can only be qualitative. The flow data was then converted to the

frequency domain at all spatial points using a Fast Fourier Transform algorithm. 6°

The CFD mesh used in the calculation extended from 5 Rj to 70 Rj in the axial

direction and from 0 to 32.2 Rj in the radial direction, where Rj is the jet nozzle

radius. The CFD mesh consisted of 390 x 280 grid points in the axial and radial

directions.

Figures 4.1 and 4.2 show the axial variation of _(Tli) and _(7"11) on the jet

centerline from 5 to 70 jet radii (the extent of the available data), for the first and

second Fourier wave modes, which correspond to St -- 0.20 and St = 0.40, (_ and

denote the real and imaginary parts respectively). All variables are normalized

by jet nozzle conditions. Higher order wave modes show similar results. It is

evident that the disturbance amplitude is quite large at the end of the computational

domain. Thus, a prediction of the disturbances in the region downstream of the

computational domain, e.g. equation (3.27), is required.

Output from the numerical jet simulation was used to determine pl, pl, and the

necessary derivatives on a cylindrical Kirchhoff surface. The surface was chosen to

match lines in the mesh used for the CFD calculations, so that Lk = 64.67 Rj, and

Rk ----8.56 Rj. These values were deemed to be the best choices among the available

data, based on mesh spacing and the assumed linearity of disturbances near the

surface. (The surface extends axially from x -- 5 Rj to x -- 69.67 Rj.) There

are 389 axial, 167 radial, and 90 azimuthal quadrature points on the Kirchhoff
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surface. These points correspond to points in the CFD mesh. The radial mesh is

exponentially stretched about R = Rj. First order, mid-panel quadrature 5° was

again used in the determination of the integral solutions. On the constant R portion

of the Kirchhoff surface, the number of quadrature points is approximately equal to

10 points per wavelength of the fourth Fourier mode. This is around the lower limit

found to be sufficient for accurate predictions in previous chapters. Thus, only the

first four Fourier modes are used in the calculations shown here.
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Figure 4.1. Computed centerline axial variations of Tll at St = 0.20.

Figure 4.3 shows the acoustic signals generated by two levels of approxima-

tion, as well as the signal generated with the first four Fourier modes of the CFD

prediction, at (x, R) = (63.17Rj, 9.18 Rj). Both levels of approximation match the



4.1 Axisymmetric Round Jet 69

CFD calculations reasonably well, at this observation point. The volume integral

in the modified Kirchhoff equation does not have much effect in this region, as the

majority of the sound prediction comes from the terms of the traditional Kirchhoff

integral, on the constant R portion of the Kirchhoff surface. Shih, et. al. 34 have

shown that predictions obtained with the modified Kirchhoff integral match very

closely with other prediction schemes in this region.
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Figure 4.2. Computed centerline axial variations of Tll at St = 0.40.

Figure 4.4 shows a snapshot of instantaneous pressure disturbance contours.

The disturbances shown above the centerline were calculated with the modified

Kirchhoff method on a closed surface (pl = a2p_). Those shown below the centerline

were calculated with the traditional Kirchhoff method on an open surface (pl =
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p- po). (The traditional Kirchhoff method is not valid on the closed surface near

the jet centerline.) The figure shows that the modifications have a substantial effect

in the region downstream of the Kirchhoff surface: The modified Kirchhoff method

produces disturbances which appear to propagate spherically from an equivalent

source located near x, _ 30 Rj.
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Figure 4.3. Predicted acoustic signals from the CFD calculations and Kirchhoff

methods at (x,R) -- (63.17 Rj, 9.18 Rj).

There is a large zone of relative silence in the traditional Kirchhoff prediction caused

by the omission of noise generated at and downstream of the surface. A smaller

zone of silence near the jet centerline should be evident in the predictions. This

zone of silence is caused by mean flow refraction of the sound. However, no means
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on approximating the physical processes involved in this refraction are currently

included in the Kirchhoff methodology. Both predictions appear to adequately

capture the Mach wave radiation in the region R > 10 Rj.
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Figure 4.4. Snapshot of instantaneous pressure contours (normalized by free stream

pressure) predicted with the modified and traditional Kirchhoff methods. Contours:

min = -0.020, max = 0.020, increment = 0.002. Negative contours are dashed.

The Kirchhoff surface is shaded

The effects of the newly derived modifications to the Kirchhoff integral are
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also clearly shown in figure 4.5. The figure shows sound pressure level contours

calculated from the two cases described above. The levels are scaled relative to the

experimental data given by Troutt and McLaughlin. 59 The differences between the

two predictions are clearly evident in the region downstream of the computational

surface. The predictions show qualitative agreement with the results presented in

reference 59, and also those presented by Mankbadi, et. al. 61 However, it should be

noted again that the calculations shown here were based on an axisymmetric CFD

calculation. The experimental data in reference 59 is made up of axisymmetric and

helical disturbance modes, so that a direct quantitative comparison is not possible.

In the future, as more accurate and efficient numerical methods become avail-

able for the near-field acoustics predictions, the modified Kirchhoff method should

be able to predict mid-field and far-field acoustics in regions where the traditional

Kirchhoff method other prediction schemes lose validity. The modified method

should also be useful in the prediction of other types of aerodynamically generated

noise as well.

4.2 Two Dimensional Plane Jet

A second set of jet CFD calculation data has been made available to the au-

thors. These calculations numerically simulated the flow field of a two-dimensional

rectangular slot jet. The calculations were performed in an effort to approximate

the experimental conditions of Raman, 62 and to investigate the instability modes

excited by natural screech tones.
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Figure 4.5. Sound pressure level contours predicted with the modified and tradi-

tional Kirchhoff methods. The Kirchhoff surface is shaded

The computational study, which was performed at the Ohio State University,

solved the unsteady, two dimensional, Navier-Stokes equations. The numerical al-

gorithm used to solve the equations was the MacCormack method, which is second

order accurate in both space and timefi 3 The calculations were performed to sim-

ulate a jet exiting a converging rectangular nozzle with an aspect ratio of 9.63. In

the experimental and numerical studies, the jet was in an underexpanded condition,
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so that the plume contained shock waves. The jet Mach number, just downstream

of the initial expansion system, was M -- 1.6. The numerical simulations assumed

that the ambient conditions were that of a standard atmosphere. The numerical

simulation was allowed to progress temporally from the initial conditions (those of

the experiment) to a state where the period of the jet's flapping mode was nearly

constant. The jet was not numerically excited. For the sake of the predictions

shown here, the jet flow field was assumed to be periodic with a frequency equal to

that of the flapping mode. The calculations were performed with a computational

mesh that extended 70 h in the streamwise direction, and from -20 h to 20 h is

the spanwise direction. Here, h is the width of the jet nozzle opening. A sample

computational mesh, similar to that used in the calculations, is shown in figure 4.6.
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Figure 4.6. Computational mesh used in the 2D jet simulations. For clarity, every

other point is shown.

Figures 4.7 and 4.8 show the streamwise variation of the real and imaginary parts of
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Tll at y = 0, for the first two Fourier modes. The two modes correspond to Strouhal

Numbers (Stm = wmh/27rUj) of approximately 0.125 and 0.250 respectively. Here

Uj is the RMS averaged jet velocity at the nozzle. The values of T/j are normalized

by the jet dynamic pressure, qj = pjU 2.
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Figure 4.7. Computed streamwise variations of Tll at y = 0. St = 0.125.

A Kirchhoff surface was chosen to surround the majority of the noise producing

region of the jet flow. A sample Kirchhoff surface is shown with a heavy line in

figure 4.6. Surface data was taken directly from the CFD mesh, and transformed

via FFT. The surface extended from 0 to 26.9 h in the spanwise direction. Data

in the simulation downstream of 26.9 h was judged to be unreliable in acoustics

predictions, due to spurious waves reflected into the computational domain at the
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downstream end of the domain. The portions of the Kirchhoff surface just above or

below the shear layer were chosen to match match one line in the CFD mesh. On

the upstream side of the surface, it is located at y __ +2.25 h, and at the downstream

end at y __ +6.76 h. There are 134 quadrature points in the streamwise direction

and 74 points in the spanwise direction on the surface. Data at these points was

taken directly from the CFD calculations.

' I I I I I

6 I ¢_(Tll)3(Tll)

4

2

0

-2

-4

"
\ \i

_6 0

.... , .... K .... I .... I , -- ....
5 10 15 20 25 30

time/period

Figure 4.8. Computed streamwise variations of 7'11 at y = 0. St = 0.250.

The two dimensional frequency domain version of the modified Kirchhoff

method, equation (3.20), was used to calculate near-field and mid-field the noise

produced by this jet. Experience has shown that the two dimensional modified

Kirchhoff formulation is sensitive to the accuracy of the surface normal derivatives.
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No means of increasing the accuracy of these calculations was available, so acous-
/

tics predictions suffer somewhat from derivatives which are calculated in regions

where the CFD mesh is more coarse. The enrichment procedure discussed in previ-

ous chapters was programmed into the two dimensional code to help alleviate this

problem somewhat. Additionally, since the jet was not numerically excited, the data

used on the Kirchhoff surface is not completely periodic in nature. This periodicity

is an implicit assumption in the development of the frequency domain formulations

of the Kirchhoff integrals. So, while the CFD data is not periodic, the Kirchhoff

predictions are, resulting in a lack of correlation. These caveats aside, the jet simu-

lation data can be used to demonstrate the usefulness of Kirchhoff method for the

prediction of jet noise in cases where a two dimensional simulation is appropriate.

Figure 4.9 shows calculated acoustic signals at (x, y) = (28.57 h, 6.56 h), while

figure 4.10 shows signals at (x,y) -- (14.43 h,-4.14 h). The temporal signal pro-

duced by the first two Fourier modes of the CFD prediction data is also shown

for comparison. Only the first and second Fourier wave modes were used in the

Kirchhoff predictions. Use of higher order modes produced oscillations in the cal-

culated signals. These oscillations can be explained by the requirement of ,-_ 20

points per wavelength on the surface, as was determined in Chapter 2. In these

calculations, there are approximately 24 quadrature points per wavelength of the

first mode on the Kirchhoff surface. For the second mode, the number drops to

12 points per wavelength. For higher modes, with shorter wavelengths, there are

not enough quadrature points to adequately resolve the integrands in the Kirchhoff

integral.

These figures show the ability of the modified Kirchhoff method to determine,

at least in a qualitative sense, the near-field and mid-field acoustics due to a two
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dimensionalplanar jet.
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Figure 4.9. Temporal acoustic signatures from the Kirchhoff methods and CFD

calculation, at (x, y) = (28.57 h, 6.56 h).

The signals calculated with the CFD code are not periodic, while those of the

Kirchhoff method are. Also, the signals generated with the Kirchhoff method have

zero mean pressure disturbance, while those from the CFD calculations do not.

This is due to the nature of the Hankel functions in the 2D modified Kirchhoff

formulation. The Hankel function with zero argument (i.e. k = 0) is singular, so an

asymptotic approximation should be used. However, in these calculations, H(2)(0)

is set to zero. A comparison of the signals generated with the first two Fourier

modes of the CFD prediction, and the full CFD prediction (shifted to zero mean
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pressuredisturbance) at (x, y) = (28.57h, 6.56 h) is shown in figure 4.11.

The modified Kirchhoff method seems to do a better job of matching the pre-

diction from the CFD codes, at least at these observer points. The traditional

Kirchhoff calculations used an open Kirchhoff surface, again because that formula-

tion is not valid otherwise.
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Figure 4.10. Temporal acoustic signatures from the Kirchhoff methods and CFD

calculation, at (x, y) = (14.43 h, -4.14 h).

Figures 4.12 and 4.13 show contours of _/po in the acoustic near-field and

mid-field due to the jet. Figure 4.12 shows contours at the first Fourier Mode,

St = 0.125, while figure 4.13 has contours at St = 0.250. The contours were

calculated with the traditional Kirchhoff method and an open control surface. The
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form of outward propagating wavesis apparent, but there is no means,other than

the results presented in the previous two figures, of determining if thesewaves

representany physical reality.
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Figure 4.11. Comparison of CFD-generated Fourier modes at (x, y) =

(28.57 h, 6.56 h).

The same contour plots are presented again in figures 4.14 and 4.15. However,

in this case the modified Kirchhoff method was used to generate the acoustic signals.

The wave forms appear to be more sharply defined in this case, but the general trend

shown by the traditional method contours holds here as well. Note that the null

field expected inside the Kirchhoff surface is not calculated as it should be. This is

most likely caused by the mesh spacing used to calculate O_/On on the Kirchhoff
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surface.

25

2O

15

10

5

y/h 0

-5

-10

-15

-20

-25

I

Figure 4.12. Contours of /po (Real part) calculated with the traditional Kirchhoff

method. First Fourier mode, St = 0.125. Contours: min = -3.00, max = 3.00,

increment = 0.40. Negative contours are dashed. The Kirchhoff surface is shaded.

The effects of grid spacing on the Kirchhoff predictions were investigated fur-

ther by calculating the acoustic field of a point acoustic source placed inside a

Kirchhoff surface identical to that used in the calculations presented above. The

source was place at (x, y) -- (11.14 h, 0.0). The relative error, as a function of Ax,
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the mesh spacing used in the derivative calculations, is shown in figure 4.16. At this

observer location, (x, y) = (11.14 h, 6.63 h), with the mesh spacing used in the CFD

calculations, the relative error is _ 0.20%. (This point is indicated in the figure

with an arrow.)
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Figure 4.13. Contours of _/po (Real part) calculated with the traditional Kirchhoff

method. Second Fourier mode, St = 0.250. Contours: min = -3.00, max = 3.00,

increment = 0.40. Negative contours are dashed. The Kirchhoff surface is shaded.
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Figure 4.14. Contours of _/po (Real part) calculated with the modified Kirchhoff

method. First Fourier mode, St = 0.125. Contours: min = -3.00, max = 3.00,

increment = 0.40. Negative contours are dashed. The Kirchhoff surface is shaded.

The effects of the error caused by coarse mesh spacing are shown in figure 4.17.

This figure shows contours of the real part of the predicted monopole signal. The

Kirchhoff surface and mesh spacing used were identical to those used in the CFD

calculations shown earlier. The signals show many characteristics similar to those

generated with the CFD calculations. The expected null field inside the Kirchhoff
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surface is not obtained, and there are many nodes and anti-nodes in the acoustic

field. When a very fine spacing was used to calculate the derivatives on this same

surface, the predictions were very nearly exact. So, the errors presented here, and

in the previous figures, are due to the coarse mesh used in the CFD calculations.

Use of a very fine mesh in the CFD calculations should alleviate most of this error.
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Figure 4.15. Contours of p/po (Real part) calculated with the modified Kirchhoff

method. Second Fourier mode, St -- 0.250. Contours: min = -3.00, max = 3.00,

increment = 0.40. Negative contours are dashed. The Kirchhoff surface is shaded.



4.2 Two Dimensional Plane Jet 85

More researchinto the effectsof meshspacingand quadrature implementation

in the two dimensionalKirchhoff formulations is required before they can be used

with confidencein jet noisepredictions. The physicalconditions usedasa basisfor

the CFD calculationsare inherently three dimensional,sothe best future courseof

action may be to developaccurate3D CFD calculations, and use the 3D Kirchhoff

formulations. Someof the results of this section werepresentedby the authors in

reference35.
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Figure 4.16. Relative Error, I¢- 3e o l/  xo , verses mesh spacing. M -- 0.0.

The results presented in this chapter show that surface integral methods, the

Kirchhoff method and Ffowcs Williams-Hawkings based methods, can be used in

the prediction of jet noise. The modifications presented in the previous chapter
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are necessary for these formulations to be valid. Accurate Kirchhoff surface data

(e.g. from CFD/CAA calculations) is essential for valid predictions.
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Chapter 5

Refraction Corrections

As discussed in earlier chapters, the Kirchhoff method has been used success-

fully in the prediction of jet noise by several researchers recently. 29'3°'34'35'61'64 Shih,

et. al. 34 showed that the Kirchhoff method can predict results nearly identical to

those obtained with a direct calculation method, with a substantial savings in CPU

time. However, there are some difficulties involved with using the Kirchhoff method,

and related methods, for jet aeroacoustic problems. For an accurate prediction, the

Kirchhoff control surface must completely enclose the aerodynamic source region.

This is often difficult or impossible to accomplish with the source regions found in

jet acoustics problems. The validity of predictions is also dependent on the control

surface being placed in a region where the linear wave equation is valid. Difficulties

meeting this criterion frequently arise in jet acoustics studies. Additionally, the

existence of a steady mean flow outside the Kirchhoff surface will cause refraction

of the propagating sound. Failure to account for this refraction will also lead to

errors when the observer location is near the jet axis.

87
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This chapter outlines the preliminary developmentof correctionsto the modi-

fiedKirchhoff method to accountfor the difficulties causedby meanflow refraction.

The correctionsarebasedon geometricacousticsprinciples, with the steadymean

flow approximated asan axisymmetric parallel shear flow. Samplecalculationsare

presentedwhich show the correctionsto predict a "zone of silence" in qualitative

agreementwith experimentalobservations.Thesedevelopmentswerepresentedby

the authors in reference65.

5.1 Refraction Effects

The Kirchhoff formulas presented in (2.27) and (3.17) can efficiently and ac-

curately predict aerodynamically generated noise, as long as the Kirchhoff surface

surrounds the entire source region. In jet noise predictions, however, it is usu-

ally impossible, with current numerical methods, to determine the entire near-field

source region. This is due to time and memory limitations imposed by the computer

architecture, as well as dispersion and dissipation constraints. Thus, a significant

nonlinear source region, as well as a steady mean flow, will exist outside of the

Kirchhoff surface. The jet flow field and Kirchhoff surface for a circular jet are

depicted in figure 5.1.

The large extent of the source region described above can be seen in axisymmet-

tic jet numerical data discussed in the previous chapter. It is evident from figures

4.1 and 4.2 that the disturbance amplitude is quite large at the end of the computa-

tional domain. Thus, some approximation of the sources in the region downstream

of the Kirchhoff surface is necessary. One possible approximations was presented

by the authors in chapter 3. In this chapter, the emphasis will be on the refraction
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causedby the steady mean flow, so any nonlinear sourcesoutside the Kirchhoff

surfacewill be ignored. In the future, the nonlinear sourceapproximationsshould

be includedalong with the refraction correctionsderivedhere.

Jet /-Kirchhoff

Plume - /Surface

Figure 5.1. Jet flow and Kirchhoff surface.

Even if the unsteady sound sources outside of the Kirchhoff surface can be

ignored, there is still a substantial steady mean flow in the region near the jet axis,

downstream of the Kirchhoff surface. Figure 5.2 shows the decay of averaged axial

velocity along the jet axis. At the downstream end of the Kirchhoff surface the mean

axial velocity is still over 98% of the jet exit value. The linear wave equation (2.1) is

not valid for acoustic propagation through the region near the jet axis, downstream

of the Kirchhoff surface. Thus, some means of approximating the effects of this

steady flow are required if an acoustic prediction is desired for observer points lying

near the jet axis.

5.2 Flow Approximation and Effects

A suitable approximation to the downstream flow is necessary, in order to

determine the refraction effects. In the past, several researchers have used an ax-

isymmetric parallel shear flow model to determine sound produced by point acoustic
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sources within circular jets. 66-69 This approach is adopted here as well. A real jet

has non-zero radial velocity, but the refracting effect of this component is minimal,

and can safely be ignored. The numerical simulations used to determine the near-

field source terms on the Kirchhoff surface are axisymmetric in nature, so the lack of

azimuthal variation in the parallel shear flow approximation will not have an effect

here. The value of the axial velocity to be used in the shear flow approximation can

be taken directly from the near-field numerical simulation, at the downstream end

of the Kirchhoff surface, as an average of the time dependent axial velocity at each

radial grid point.
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Figure 5.2. Decay of averaged centerline axial velocity.
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The refraction problem now consists of a collection of point acoustic sources

(the integrands of (2.27) or (3.17)) acting at radial location R, scaled by differential

area AS = RARA_, (where _ is the azimuthal angle), and the parallel shear flow

with U determined at each R. If the acoustic wavelength, A = 2rao/W, is assumed to

be small compared to the shear layer thickness 5, then geometric acoustics principles

hold.

If the steady velocity at the downstream end of the Kirchhoff surface is denoted

Us, the sound emission angle with respect to the jet axis 0s, and the emission angle

in the stagnant, ambient air is denoted 0o, then the axial acoustic phase speeds are

preserved by the stratified flow, i.e. 6s

ao

cos Vqo

ao

- U8 + -- (5.1)
cos O_

Here it is assumed that the speed of sound at the source is equivalent to that in the

ambient air. This equation can be rearranged to show that there is a critical angle,

0c defined by

Oc ---- COS-1 (1 (5.2/
1

If the the observer angle 0o is greater than 0c than no sound emitted at the source

on the Kirchhoff surface can reach the observer. This criterion is easily added to

the stationary surface Kirchhoff program. (Note that Ms is the Mach number of

the mean shear flow, and not the Kirchhoff surface, which is assumed stationary.)

An additional correction is necessary to accurately account for the mean flow

refraction. Imposing the local "zone of silence" condition described above can allow

a surface source at a relatively large radial location to radiate sound into and through

the shear flow. This is because the local "zone of silence" decreases in size with

the radial location of the source, because of the decrease in source Mach number.



5.3 Sample Validation Calculation 92

The simple correction is to set the source strength to zero if the observation point

is located closer to the jet axis than the source point on the Kirchhoff surface,

{RARA_ Ro > Rs (5.3)AS = 0 Ro < Rs

It should be noted that the azimuthal variation between the source and observer

points has been ignored in the analysis presented here. The azimuthal variation

should have some effect, but it is most likely secondary to those effects described

above. (Though the near-field CFD calculations are axisymmetric, the Kirchhoff

surface is a full three dimensional cylinder, so discrepancies between source and ob-

server azimuthal location can exist.) Also, the geometric acoustics approximation is

only valid for 5/A > 1. It is assumed here that the downstream end of the cylindrical

Kirchhoff surface is located far enough downstream of the jet potential core that the

shear layer thickness is large compared with the acoustic wavelength. Regardless,

Morfey and Szewczyk 6s have shown that jet mixing noise can be effectively modeled

with geometric acoustics principles even when 5/A < 1.

5.3 Sample Validation Calculation

As an initial test of the refraction corrections for the Kirchhoff method, a

simple acoustic monopole was placed inside a cylindrical Kirchhoff control surface.

The monopole was located at (x, R) = (5 A, 0). The cylindrical Kirchhoff surface

had dimensions (Lk, Rk) = (10 A, 1.5 A). The surface was discretized with 130, 40

and 90 quadrature points, in the axial radial and azimuthal directions respectively.

The value of the Kirchhoff integrands was determined analytically on the Kirchhoff

surface at each quadrature point. For comparison, the radiated sound field was first
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calculated in the absence of a mean shear flow. Then, a parallel shear flow was

imposed in the region downstream of the Kirchhoff surface. The flow velocity was

governed by

Us(R) = Msao exp [-(R2/b2)]

where Ms = 1.4, and b = 0.153 A. This is not a realistic scenario, as the shear flow is

created at the end of the Kirchhoff surface, and no refractive effects are included in

the analytical determination of the Kirchhoff integrands, but it serves the purpose

of demonstrating the nature of the proposed corrections.

Figure 5.3 shows instantaneous contours of ¢ calculated with the Kirchhoff

method for the case described above. The contours shown above the centerline are

those obtained with no refracting flow field, while those shown below the centerline

were obtained with with refraction corrections described above. The effect of the

parallel shear flow is seen in the region downstream of the Kirchhoff surface the

propagating sound waves are bent away from the centerline by the imposed shear

flow. This causes a "zone of silence" near the centerline. Note that a null sound

field is calculated inside the Kirchhoff surface in both cases. As discussed in earlier

chapters, this is a result of the outgoing radiation condition imposed by the Green's

function solution of the wave equation, and serves as a validation of the numerical

implementation of the Kirchhoff algorithm.

5.4 Jet Noise Calculation

The axisymmetric near-field jet CFD calculations discussed above and in the

previous chapter were used to determine the integrands in the Kirchhoff integral

formula, and also to predict the parallel shear flow downstream of the Kirchhoff
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surface. The surfacewaschosento match lines in the mesh, and was identical to

that discussedin the previouschapter.

Figure 5.3. Instantaneouscontoursof ¢. R > 0: No shear flow. R < 0: Shear flow

imposed at Kirchhoff surface.

The effect of the refraction corrections on this jet noise prediction is shown

in figure 5.4. The figure shows instantaneous contours of a2pl/po on a plane pass-

ing through the jet axis, calculated with the modified Kirchhoff method and the
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numerical data described above. The contours shown above the jet axis are those

obtained when the mean flow refraction effects were ignored. The contours shown

below the jet axis were calculated in an identical fashion, except that the effects of

mean flow refraction were included in sound generated at the downstream end of

the Kirchhoff surface.
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Figure 5.4. Instantaneous contours of a2pt/po. R > 0: No refraction corrections.

R < 0: Refraction corrections imposed.
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Both calculations capture the Mach wave radiation in the region R > 10 Rj identi-

cally. The steady mean flow has little effect on the radiation in this region. Down-

stream of the Kirchhoff surface, the sound waves appear to propagate away spheri-

cally from an equivalent source located near x _ 30 Rj. In the prediction without

refraction correction, the sound waves have large amplitude near the end of the

Kirchhoff surface, and propagate as through a uniform stationary medium. The

corrections, however, reduce the amplitude in the region near the jet axis, and ad-

just the phase of each disturbance. The corrected sound waves propagate away from

the axis at a modest angle. This creates a "zone of silence" near the axis, similar in

nature to those observed experimentally. The zone of silence is also evident in figure

5.5, which shows sound pressure level contours in the near and mid acoustic fields.

The reduction in amplitude near the jet axis caused by the refraction corrections

is again evident. Also noteworthy is the prediction of sound inside the Kirchhoff

surface. As discussed earlier, a null acoustic field should be calculated inside the

surface. The sound field inside the surface shown here is a result of several factors.

Among these factors are numerical roundoff errors, and the interpolation routine

used by the graphics program. Also, the upstream end of the Kirchhoff surface was

left open in the predictions.

In the past, researchers utilizing Kirchhoff methods to predict jet noise have

ignored sound generated at and outside of the downstream end of the Kirchhoff

surface. 29,30,64 If the observer lies in an area in which a majority of the sound is

predicted by the constant radius portion of the Kirchhoff surface, then this omission

may not pose a problem. However, the authors have shown that "open surface"

Kirchhoff methods are not acceptable for jet acoustics predictions when the observer

is in the region downstream of the Kirchhoff surface. The refraction corrections
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presented here can aid in the accurate prediction of sound in this region. While

these corrections are crude, and most likely overly simplified, they do represent a

first step towards efficient, accurate determination of acoustic propagation at and

near a jet axis. Further development of the corrections is required. Emphasis should

be focused on inclusion of azimuthal and amplitude variations in the refraction

effects.
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Figure 5.5. Sound Pressure Level contours (Re: 2 × 10 -5 Pa). R > 0: No refraction

corrections. R < 0: Refraction corrections imposed.



Chapter 6

Concluding Remarks

This report is concerned with the development of improvements to the Kirch-

hoff method and Ffowcs Williams-Hawkings methods used in computational aeroa-

coustics. This chapter briefly summarizes the main results and developments of this

work, and presents some recommendations for future related research.

6.1 Conclusions of This Work

Aerodynamically generated noise is now and will continue to be a source of

annoyance for the general public. Thus, efficient and accurate means of predicting

this noise are required. Direct calculation of aerodynamic sound through the use

of a CFD like algorithm is possible. But, the requirements imposed by dissipation

and dispersion errors, as well as limitations on computer time and memory, make

this an impractical method for the calculation of mid-field and far-field sound. It

is usually necessary to separate the noise generation problem into two parts, one in

98
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which the noise sources are calculated, and another in which the sound propagation

to the mid-field and far-field is determined.

This separation of the aerodynamic noise generation problem is the basis of

Lighthill's acoustic analogy. 1° In the acoustic analogy, sound sources are determined

through a CFD or empirical process. Then, a volume integral is numerically solved

to determine the mid-field and far-field sound. If the source region is non-compact,

as in most important problems, this volume integration leads to prohibitive com-

putation times and memory requirements.

An alternative to the burden of the volume integrations in the acoustic anal-

ogy can be found in the Kirchhoff method. 19,26 In the Kirchhoff method, a control

surface surrounds all noise sources. Through the use of Green's theorem, a sur-

face integral over this surface can be used to determine the acoustics at any point

outside the surface. The reduction in dimension from a volume integral to surface

integral represents a tremendous savings in required computer time and memory.

The Kirchhoff method has been used successfully in the prediction of noise from he-

licopter rotors, turbomachinery and other aerodynamic problems where the source

region is relatively small, and easily contained within the Kirchhoff surface. 2s

However, the noise generated by jet flows is a very important exception. These

flows generally have very extensive source regions. As shown in chapter 4, these

source regions usually extend beyond the extent of the numerical domain used

in near-field CFD calculations. In this case, the Kirchhoff surface is not able to

enclose all sound sources. This leaves Kirchhoff predictions invalid in some portions

of the acoustic field. However, the open-surface Kirchhoff methodology has been

successfully used jet noise calculations. 28,3° It is desirable to develop a Kirchhoff
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integral that is valid over all portions of the acoustic field. Development of this

integral, valid in the entire acoustic field, is the main goal of this work.

Several important points concerning this integral, and associated developments

are presented in this report. There are listed here again for clarity:

1. Equivalence of FWH and Kirchhoff Formulations:

In Chapter 2, the Ffowcs Williams-Hawkings equation is and the Kirchhoff

integral equation 27 were rigorously shown to be equivalent to one another, under

certain conditions. In fact, the Ffowcs Williams-Hawkings equation is a special

case of Kirchhoff's formula. That case being for an inhomogeneous (Lighthill's)

wave equation, with the density perturbation as the wave variable. This fact was

noted by Ffowcs Williams and Hawkings, 18 and Farassat, 36 but was not shown.

1.1 Noise Generation by Porous Surfaces:

The developments of Ffowcs Williams and Hawkings, is and subsequent appli-

cations of Farassat 24 and others assume the noise generating surface is solid, and

impermeable. This assumption is mathematically equivalent to placing a Kirchhoff

control surface such that it surrounds all sound sources. As, discussed above, this

is often not possible in jet noise studies. Blowing and suction on an airfoil blade

will also alter the noise generation. For these reasons, porous surface versions of

the Kirchhoff integral equation and the Ffowcs Williams-Hawkings equation were

developed, and shown to be equivalent. These versions became what is referred to

as the modified Kirchhoff method.

2. Development of Useful Algorithm Extensions:

The porous surface versions of the Kirchhoff integral and Ffowcs Williams-

Hawkings equation discussed above were expressed in such a way as to make them
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easilyapplicablein existing aeroacousticprediction codes.In the developmentof the

modified Kirchhoff method, the El, E2... nomenclature of Farassat and Myers 27

was adopted. Thus, a computer program currently based on the Farassat and Myers

formulation of the Kirchhoff integral can easily by extended to the modified Kirch-

hoff integral with the use of pr -_ a2p_ as the dependent variable, and the addition

of a volume integral. The similarities between the two formulations allow for the

development of a versatile code which can predict aerodynamically generated noise

using the most appropriate algorithm (Kirchhoff or Ffowcs Williams-Hawkings) for

the problem at hand.

2.1 Volume Integral Equivalent and Approximation:

The integrand of the volume integral which appears in the modified Kirch-

hoff formulation, the Ffowcs Williams-Hawkings formulations, and the solution of

Lighthill's equation is written in a new, equivalent form. This form allows for more

accurate numerical determination of the integral solution. It also facilitates the

approximate integral solutions presented in chapter 3.

2.2 Frequency Domain and 2D Developments:

The traditional and modified Kirchhoff methods were presented in the fre-

quency domain and for two dimensional aeroacoustics problems. The traditional

Kirchhoff method has been used in these cases previously, but all the formulations

have not yet been presented together in one work, as is done here.

2.3 Refraction Corrections:

Simplified refraction corrections, for use in jet noise studies, were developed.

These corrections can be used to improve jet noise calculations in the region near

the jet axis.
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Basedon thesedevelopments,the modified Kirchhoff method haspotential to

becomea popular and valuabletool for aeroacousticanalysis.

6.2 Recommendations for Future Work

Development of the integral methods presented in this work is ongoing. This

work will continue as long as surface integral methods are used in aerodynamic

noise prediction. Some particular areas on interest for work in the near future are

discussed next.

The refraction corrections developed in chapter 5 are preliminary and simpli-

fied. The corrections should be extended to account for azimuthal variations, and

non-parallel flow effects.

The volume integral approximations presented in chapter 3 are crude and very

simplified. Development of new approximations, which are more universally appli-

cable, should be a priority in any extensions of this work. Work on these extensions

should be performed in conjunction with the refraction corrections as well.
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